图的匹配问题与最大流问题(三)——最大流问题Ford-Fulkerson方法Java实现

上篇文章,主要介绍了Ford-Fulkerson方法的理论基础,本篇给出一种Java的实现。

先借助伪代码熟悉下流程

FORD-FULKERSON(G,t,s)

1 for each edge(u,v)属于E(G)

2     do f[u,v]=0

3          f[v,u]=0

4 while there exists a path p from s to t in the residual network Gf

5       do cf(p)=min{cf(u,v):(u,v)is in p}

6        for each edge (u,v) in p

7              do f[u,v]=f[u,v]+cf(p)

8                    f[v,u]=-f[u,v]

如果在4行中用广度优先搜索来实现对增广路径p的计算,即找到s到t的最短增广路径,能够改进FORD-FULERSON的界,这就是Ford-Fulkerson方法的Edmonds-Karp算法

证明该算法的运行时间为O(VE*E),易知,对流增加的全部次数上界为O(VE),每次迭代时间O(E)

package maxflow;

import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;

import util.EdgeUtil;
import util.NodeUtil;
import entry.Edge;
import entry.Node;
/**
 * Ford Fulkerson方法求最大流,这是一种迭代的方法,开始是,初始流为0,每次迭代中,课通过寻找一条增广路径来增加流值。反复进行这一过程,直至找不到任何增广路径
 * 本算法使用了Edmonds-Karp算法(一种对Ford Fulkerson方法的实现),在寻找增广路径时使用了寻找s到t的最短路径的方法。复杂度O(VE2)
 * @author xhw
 *
 */
public class FordFulkerson {

	private static double residualNetwork[][]=null;
	private static double flowNetwork[][]=null;
	
	/**
	 * @param args
	 */
	public static void main(String[] args) {
		double graph[][]={{0,16,13,0,0,0},
						  {0,0,10,12,0,0},
						  {0,4,0,0,14,0},
						  {0,0,9,0,0,20},
						  {0,0,0,7,0,4},
						  {0,0,0,0,0,0}};
		
		System.out.println(edmondsKarpMaxFlow(graph,0,5));

	}
	/**
	 * 实现FordFulkerson方法的一种算法——edmondsKarp算法
	 * @param graph
	 * @param s
	 * @param t
	 * @return
	 */
	public static double edmondsKarpMaxFlow(double graph[][],int s,int t)
	{
		int length=graph.length;
		//List nodeList=NodeUtil.generateNodeList(graph);
		double f[][]=new double[length][length];
		for(int i=0;i0?flowNetwork[i][j]:0.0)+" ");
			}
			System.out.println();
		}*/
		return sum;
	}
	/**
	 * 计算最终的流网络,也就是最大流网络
	 * @param graph
	 * @param r
	 * @return
	 */
	private static double[][] calculateFlowNetwork(double[][] graph, double[][] r) {
		int length=graph.length;
		double f[][]=new double[graph.length][graph.length];
		for(int i=0;i0)
			{
				cfp=weight;
			}
			else if(weight<=0)
			{
				cfp=0;
				break;
			}
			result=parent;
		}
		return cfp;
	}

	/**
	 * 计算残余网络
	 * @param c
	 * @param f
	 * @return
	 */
	private static double[][] residualNetwork(double c[][],double f[][]) {
		int length=c.length;
		double r[][]=new double[length][length];
		for(int i=0;i nodeList=NodeUtil.generateNodeList(graph);
		nodeList.get(s).distance=0;
		nodeList.get(s).state=1;
		
		Queue queue=new LinkedList();
		queue.add(nodeList.get(s));
		
		while(!queue.isEmpty())
		{
			Node u=queue.poll();
			for(Node n:u.getAdjacentNodes())
			{
				if(n.state==0)
				{
					n.state=1;
					n.distance=u.distance+1;
					n.setParent(u);
					queue.add(n);
				}
			}
			u.state=2;
			if(u.nodeId==t)
			{
				result=u;
				break;
			}
		}
		return  result;
		
	}

	public static double[][] getResidualNetwork() {
			
		return residualNetwork;
			
	}


	public static double[][] getFlowNetwork() {
		return flowNetwork;
	}



}



上面的实现有点麻烦,给出一个简化版本,效率也提高了一些。

class FordFulkerson
	{
		private double residualNetwork[][]=null;
		private double flowNetwork[][]=null;
		
		public final int N;
		int parent[];
		public FordFulkerson(int N)
		{
			this.N=N;
			parent=new int[N];
		}
		/**
		 * 实现FordFulkerson方法的一种算法——edmondsKarp算法
		 * @param graph
		 * @param s
		 * @param t
		 * @return
		 */
		public double edmondsKarpMaxFlow(double graph[][],int s,int t)
		{
			int length=graph.length;
			double f[][]=new double[length][length];
			for(int i=0;i queue=new LinkedList();
			queue.add(s);
			parent[s]=s;

			while(!queue.isEmpty())
			{
				int p=queue.poll();
				if(p==t)
				{
					while(p!=s)
					{
						if(maxflow>graph[parent[p]][p])
							maxflow=graph[parent[p]][p];
						p=parent[p];
					}
					break;
				}
				for(int i=0;i0)
					{
						//flow[i]=Math.min(flow[p], graph[p][i]);
						parent[i]=p;
						queue.add(i);
					}
				}
			}
			if(parent[t]==-1)
				return -1;
			return  maxflow;
			
		}

		public double[][] getResidualNetwork() {
			return residualNetwork;
		}

		public double[][] getFlowNetwork() {
			return flowNetwork;
		}
	}


你可能感兴趣的:(算法,Java,图论)