- Python环境下基于深度判别迁移学习网络的轴承故障诊断
哥廷根数学学派
故障诊断信号处理深度学习python迁移学习开发语言
目前很多机器学习和数据挖掘算法都是基于训练数据和测试数据位于同一特征空间、拥有相同数据分布的假设。然而在现实应用中,该假设却未必存在。一方面,如果将利用某一领域数据训练得到的模型直接应用于新的目标领域,领域之间切实存在的数据差异可能会导致模型效果的骤然下降。另一方面,如果直接在新的目标领域中进行模型的训练,其数据的稀缺和标注的不完整可能会导致监督学习出现严重的过拟合问题,难以达到令人满意的学习效果
- 机器学习系列——(十九)层次聚类
飞影铠甲
机器学习机器学习聚类人工智能
引言在机器学习和数据挖掘领域,聚类算法是一种重要的无监督学习方法,它试图将数据集中的样本分组,使得同一组内的样本相似度高,不同组间的样本相似度低。层次聚类(HierarchicalClustering)是聚类算法中的一种,以其独特的层次分解方式,在各种应用场景中得到广泛应用,如生物信息学、图像分析、社交网络分析等。一、概述层次聚类算法主要分为两大类:凝聚的层次聚类(AgglomerativeHie
- 机器学习:朴素贝叶斯笔记
Ningbo_JiaYT
机器学习机器学习笔记分类算法
朴素贝叶斯(NaiveBayes)是一种基于贝叶斯定理的简单概率分类算法,广泛应用于机器学习和数据挖掘中。“朴素”体现在对特征之间的独立性做出了假设,即一个特征或者一个属性的出现不依赖于其他特征的出现。目录基本原理1.贝叶斯定理2.朴素的独立性假设贝叶斯定理1.简介2.贝叶斯公式算法过程1.训练模型2.预测类别类型注意事项基本原理1.贝叶斯定理朴素贝叶斯算法的核心是贝叶斯定理,即对于给定的样本数据
- 【转】机器学习--- 分类算法详解
奔狼的春晓
转载机器学习算法数据挖掘
原文链接:http://blog.csdn.net/china1000/article/details/48597469感觉狼厂有些把机器学习和数据挖掘神话了,机器学习、数据挖掘的能力其实是有边界的。机器学习、数据挖掘永远是给大公司的业务锦上添花的东西,它可以帮助公司赚更多的钱,却不能帮助公司在与其他公司的竞争中取得领先优势,所以小公司招聘数据挖掘/机器学习不是为了装逼就是在自寻死路。可是相比JA
- DoubleEnsemble:基于样本重加权和特征选择的金融数据分析方法
tzc_fly
论文阅读笔记金融数据分析人工智能
现代机器学习模型(如深度神经网络和梯度提升决策树)由于其提取复杂非线性模式的优越能力,在金融市场预测中越来越受欢迎。然而,由于金融数据集的信噪比非常低,并且是非平稳的,复杂的模型往往很容易过拟合。此外,随着各种机器学习和数据挖掘工具在量化交易中的应用越来越广泛,许多交易公司已经提取了越来越多的特征(也称为因子factors)。因此,如何自动选择有效特征成为一个迫在眉睫的问题。为了解决这些问题,作者
- 矩阵乘法的分布式计算架构
OpenChat
矩阵架构线性代数
1.背景介绍矩阵乘法是线性代数的基本运算,在许多计算机算法和应用中都有着重要的作用。随着数据规模的不断增加,如大规模的图像处理、机器学习和数据挖掘等应用场景,矩阵乘法的计算量也随之增加,这导致了传统的中心化计算方式无法满足实际需求。因此,研究矩阵乘法的分布式计算架构变得尤为重要。本文将从以下几个方面进行阐述:背景介绍核心概念与联系核心算法原理和具体操作步骤以及数学模型公式详细讲解具体代码实例和详细
- [Python] scikit-learn - accuracy_score(准确率分数)函数介绍和使用场景(案例)
老狼IT工作室
pythonpythonscikit-learn
Scikit-learn是一个用于机器学习和数据挖掘的Python库,提供了大量的机器学习算法和工具,使得机器学习任务更加便捷和高效。其中一个非常常用的函数是accuracy_score,用于计算分类器的准确率。本文将介绍accuracy_score函数的具体功能、函数原型和使用场景,并提供一个使用案例来说明其用法和作用。函数介绍accuracy_score函数是scikit-learn库中用于计
- 文本数据与分析方法的介绍与讨论
亦旧sea
机器学习人工智能
什么是文本数据文本数据是指由各种字符或字母组成的数据,可以包括文字、数字、符号等。文本数据通常用于表示文字信息,如文章、新闻、网页内容、聊天记录等。文本数据可以在计算机系统中进行存储、处理和分析,也可以用于自然语言处理、机器学习和数据挖掘等领域的研究和应用。如何获得文本数据获得文本数据可以有多种途径。1.网络爬虫:使用爬虫工具,如Python中的BeautifulSoup或Scrapy库,可以寻找
- 机器学习简单概念和pytorch代码-2
Persistence is gold
机器学习pytorch人工智能
机器学习简单概念和pytorch代码-2学习率的选择和调校特征工程特征工程是数据预处理和分析过程中的一个关键步骤,主要用于机器学习和数据挖掘。它涉及到从原始数据中选择、修改和创建新的特征(即数据的属性或变量),以便提高模型的性能。在机器学习中,特征工程对于提高模型的准确性和效率至关重要。它包括以下几个主要步骤:特征选择:从现有的特征集中选择最重要的特征,以减少维度并提高模型的效率。特征提取:将原始
- 大数据技术原理与应用期末考试题
无敌海苔咪
大数据开源框架期末大数据
大数据技术原理与应用期末考试题一、单选题1.下面哪个选项属于大数据技术的“数据存储和管理”技术层面的功能?A、利用分布式文件系统、数据仓库、关系数据库等实现对结构化、半结构化和非结构化海量数据的存储和管理B、利用分布式并行编程模型和计算框架,结合机器学习和数据挖掘算法,实现对海量数据的处理和分析C、构建隐私数据保护体系和数据安全体系,有效保护个人隐私和数据安全D、把实时采集的数据作为流计算系统的输
- DBSCAN聚类算法原理(含C++代码)
RobotsRuning
DBSCAN聚类c++人工智能
概述DBSCAN(density-basedspatialclustering)是一种基于密度的聚类算法,在机器学习和数据挖掘领域有广泛的应用,其聚类原理通俗点讲是每个簇类的密度高于该簇类周围的密度,噪声点的密度小于任一簇类的密度。如下图簇类ABC的密度大于周围的密度,噪声的密度低于任一簇类的密度,因此DBSCAN算法也能用于异常点检测。本文对DBSCAN算法进行了详细总结。1.DBSCAN算法的
- 【风控业务分析模型】
Oo_Amy_oO
pythonpandasnumpyscipy
预测类评分卡模型(ScoreCardModel)评分卡模型是一种用于评估客户信用风险的分析模型,广泛用于金融、保险、电商等领域。通过对客户个人信息、历史交易记录等数据进行统计分析,构建出一个客户信用得分用于评估其信用风险水平。欺诈检测模型(FraudDetectionModel)欺诈检测模型是一种用于识别可疑交易或行为的分析模型,可以帮助企业及时发现和阻止欺诈行为。通常使用机器学习和数据挖掘技术,
- 使用粒子群算法和引力搜索算法优化前向反馈神经网络进行数据分类
天使问过的键盘
算法神经网络分类Matlab
使用粒子群算法和引力搜索算法优化前向反馈神经网络进行数据分类在机器学习和数据挖掘领域,神经网络是一种常用的模型,可用于数据分类任务。为了提高神经网络的性能,可以使用优化算法对其进行训练和优化。本文介绍了如何使用粒子群算法(ParticleSwarmOptimization,PSO)和引力搜索算法(GravitationalSearchAlgorithm,GSA)优化前向反馈神经网络(Feedfor
- 人工智能增强的全流程测试在需求理解分析阶段和单元测试阶段的提效手段
超级大超越
人工智能
AIGC(人工智能增强的全流程测试)在需求理解分析阶段和单元测试阶段的提效手段如下:1.需求理解分析阶段:(1)引入自然语言处理(NLP)技术,将需求文档转化为语义模型,以更好地理解需求,发现需求中的潜在问题。(2)使用机器学习和数据挖掘技术,对需求文档进行自动分类、聚类、过滤等处理,提高需求分析的效率和准确性。(3)引入知识图谱,将需求信息进行链接和整合,辅助需求分析人员更好地理解需求与相关信息
- 【特征选择】基于二进制粒子群算法的特征选择方法(PNN概率神经网络分类)【Matlab代码#33】
天`南
Matlab#特征选择matlab神经网络分类算法
文章目录【可更换其他算法,`获取资源`请见文章第6节:资源获取】1.特征选择问题2.二进制粒子群算法3.概率神经网络(PNN)分类4.部分代码展示5.仿真结果展示6.资源获取【可更换其他算法,获取资源请见文章第6节:资源获取】1.特征选择问题特征选择是指从原始数据中选择最具有代表性和有用性的特征子集,以用于建模和预测任务。它是机器学习和数据挖掘中的重要步骤,可以提高模型的性能和解释能力,并降低计算
- 正负样本不均衡的解决办法
weixin_33834910
人工智能大数据数据结构与算法
转载自:http://blog.csdn.net/lujiandong1/article/details/52658675这几年来,机器学习和数据挖掘非常火热,它们逐渐为世界带来实际价值。与此同时,越来越多的机器学习算法从学术界走向工业界,而在这个过程中会有很多困难。数据不平衡问题虽然不是最难的,但绝对是最重要的问题之一。一、数据不平衡在学术研究与教学中,很多算法都有一个基本假设,那就是数据分布是
- 机器学习常见问题及解决方案——正负样本不均衡
荒野13
MachineLearningMachineLearning
转载自:http://blog.csdn.net/lujiandong1/article/details/52658675这几年来,机器学习和数据挖掘非常火热,它们逐渐为世界带来实际价值。与此同时,越来越多的机器学习算法从学术界走向工业界,而在这个过程中会有很多困难。数据不平衡问题虽然不是最难的,但绝对是最重要的问题之一。一、数据不平衡在学术研究与教学中,很多算法都有一个基本假设,那就是数据分布是
- 机器学习/数据挖掘之中国大牛
xuyanan3
机器学习数据挖掘机器学习数据挖掘
机器学习/数据挖掘之中国大牛推荐几个机器学习和数据挖掘领域相关的中国大牛:李航:http://research.microsoft.com/en-us/people/hangli/,是MSRAWebSearchandMiningGroup高级研究员和主管,主要研究领域是信息检索,自然语言处理和统计学习。近年来,主要与人合作使用机器学习方法对信息检索中排序,相关性等问题的研究。曾在人大听过一场他的讲
- 写作——如何写摘要
RebeccaCute
写作经验分享
菜鸟版本。很八股,但是不会翻车。第一句:背景。考虑只写主谓宾。切忌不可以写“在机器学习和数据挖掘中”这种毫无营养凑字数的句子。第二句:研究主题的现状。现状:当前用什么方法去解决了什么问题。第三句:用However,指出“现状”中还存在的问题或者尚未考虑的问题。例如:However,theyhavenotconsidered______。第四句:用“Inthispaper,wepropose____
- 基于MATLAB的人脸识别系统(包含传统/深度学习方法)
KAU的云实验台
MATLAB人脸识别matlab深度学习机器学习
基于MATLABGUI的人脸识别系统(包含传统/深度学习方法)人脸检测与识别作为计算机视觉研究的核心内容之一,是一个不断发展的领域,并且还是模式识别、机器学习和数据挖掘等相关学科交叉研究的热点,已经发展成为计算智能的重要研究课题。本文是作者人脸识别系统V1.0,基于MATLAB平台,主要实现人脸识别功能,包含3种人脸识别算法,PCA-最近邻、PCA-SVM、以及深度学习的方法,都在ORL数据集上取
- Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱
thomashtq
机器学习数据挖掘机器学习自然语言处理numpypython
曾经因为NLTK的缘故开始学习Python,之后渐渐成为我工作中的第一辅助脚本语言,虽然开发语言是C/C++,但平时的很多文本数据处理任务都交给了Python。离开腾讯创业后,第一个作品课程图谱也是选择了Python系的Flask框架,渐渐的将自己的绝大部分工作交给了Python。这些年来,接触和使用了很多Python工具包,特别是在文本处理,科学计算,机器学习和数据挖掘领域,有很多很多优秀的Py
- 《机器学习与数据挖掘》学习笔记(一)
产品扫地僧
从刚注册时强迫自己写文章时的拖延,到现在有了想法不自觉的想记录下来,是好的转变。最近开始对数据挖掘很感兴趣,在网易公开课上开始学加州理工的《机器学习和数据挖掘》,还可以顺便练练英语听力。第一课《学习问题》只要从问题引入,介绍什么是机器学习,以及常见的学习分类。在人类的认知中一些显而易见的结论,对机器而言是一个却是无限靠近的过程,比如婴儿可以快速识别一张脸的情绪等。课中介绍了银行信贷审批的例子。阐述
- [Python]第三方库
居家龙龙
一些第三方库NumPy:N维数据表示和运算pipinstallnumpyMatplotlib:二维数据可视化PIL:图像处理Scikit-Learn:机器学习和数据挖掘Requests:HTTP协议访问及网络爬虫Jieba:中文分词BeautifulSoup:HTML和XML解析器Wheel:Python第三方库文件打包文具PyInstaller:打包Python源文件为可执行文件Django:P
- 【人工智能】—_维度灾难、降维、主成分分析PCA、获取旧数据、非线性主成分分析
Runjavago
机器学习深度学习人工智能人工智能
文章目录高维数据与维度灾难维度灾难降维为什么需要降维?PRINCIPLECOMPONENTANALYSIS主成分的几何图像最小化到直线距离的平方和举例主成分的代数推导优化问题计算主成分(PrincipalComponents,PCs)的主要步骤获取旧数据的方法?主成分分析的最优性性质主要的理论结果PCA图像压缩使用核的非线性主成分分析评价高维数据与维度灾难大多数机器学习和数据挖掘技术对于高维数据可
- 深度神经网络+聚类的概述
风度78
dnn聚类人工智能神经网络深度学习
【导读】本篇介绍了深度神经网络表示学习+聚类的方法(深度聚类)综述,有帮助的话,文末点个赞吧~聚类分析在机器学习和数据挖掘中非常重要。深度聚类利用深度神经网络学习适用于聚类的表示,已广泛应用于各种聚类任务。然而,现有研究主要集中在单视图领域和网络架构上,忽略了聚类的复杂应用场景。为解决这一问题,本文从数据源的角度对深度聚类进行了全面的调查。针对不同的数据源和初始条件,我们从方法论、先验知识和架构方
- 机器学习和数据挖掘04-PowerTransformer与 MinMaxScaler
丰。。
机器学习与数据挖掘大数据数据分析人机交互笔记学习
概念PowerTransformer(幂变换器)PowerTransformer是用于对数据进行幂变换(也称为Box-Cox变换)的预处理工具。幂变换可以使数据更接近正态分布,这有助于某些机器学习算法的性能提升。它支持两种常用的幂变换:Yeo-Johnson变换和Box-Cox变换。代码实现fromsklearn.preprocessingimportPowerTransformerimportn
- 机器学习和数据挖掘02-Gaussian Naive Bayes
丰。。
机器学习与数据挖掘数据分析信息可视化数据挖掘大数据人工智能
概念贝叶斯定理:贝叶斯定理是概率中的基本定理,描述了如何根据更多证据或信息更新假设的概率。在分类的上下文中,它用于计算给定特征集的类别的后验概率。特征独立性假设:高斯朴素贝叶斯中的“朴素”假设是,给定类别标签,特征之间是相互独立的。这个简化假设在现实场景中通常并不完全准确,但它简化了计算过程,在实践中仍然可以表现良好。高斯分布:高斯朴素贝叶斯假设每个类别中的连续特征遵循高斯(正态)分布。这意味着在
- 机器学习和数据挖掘01- lasso regularization
丰。。
机器学习与数据挖掘大数据数据分析人工智能数据挖掘信息可视化
概念Lasso正则化是一种线性回归中的正则化技术,旨在减少模型的复杂性并防止过拟合。Lasso(LeastAbsoluteShrinkageandSelectionOperator)通过在损失函数中添加正则项,促使模型的系数变得稀疏,即某些系数会被压缩到零,从而实现特征选择。在Lasso正则化中,我们引入了一个惩罚项,它是模型中所有系数的绝对值之和乘以一个参数α。这个参数α控制了惩罚的强度,从而影
- 机器学习和数据挖掘03-模型性能评估指标
丰。。
机器学习与数据挖掘大数据数据分析人工智能
Accuracy(准确率)概念:模型正确预测的样本数量与总样本数量的比例。公式:Accuracy=(TP+TN)/(TP+TN+FP+FN)TP(TruePositives):正确预测为正例的样本数。即模型正确地将正例判定为正例。TN(TrueNegatives):正确预测为负例的样本数。即模型正确地将负例判定为负例。FP(FalsePositives):错误预测为正例的样本数。即模型错误地将负例
- 探索人工智能 | 智能推荐系统 未来没有人比计算机更懂你
阿Q说代码
人工智能人工智能智能推荐机器学习数据挖掘数据分析个性化推荐算法
前言智能推荐系统(RecommendationSystems)利用机器学习和数据挖掘技术,根据用户的兴趣和行为,提供个性化推荐的产品、内容或服务。文章目录前言核心机器学习为什么说机器学习是智能推荐系统的基础呢?数据挖掘数据挖掘在智能推荐系统中的作用算法优势个性化推荐提高搜索效率丰富用户体验提升销售和转化率拓展长尾市场挑战总结核心智能推荐系统是一种利用机器学习和数据分析技术的应用程序,旨在根据用户的
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默