SQL编译解析三部曲分为:构建语法树,生成逻辑计划,指定物理执行计划。第一步骤,在我的上一篇博客淘宝数据库OceanBase SQL编译器部分 源码阅读--解析SQL语法树里做了介绍,这篇博客主要研究第二步,生成逻辑计划。
我们已经知道,语法树就是一个树状的结构组织,每个节点代表一种类型的语法含义。如 update student set sex="M" where name ="小明";
这条SQL的语法树形状为:
|Update Stmt
|----Table:student
|----TargeList:
|--------sex = "M"
|----Qualifications:
|--------name="小明"
但是仅仅语法树并不能知道数据库中是否存在student这张表,这张表是否有sex,name这两个字段,我们是否有权限修改这条记录等。语法树只能判断这条SQL的写法是否正确,不能确定这条SQL是否可以执行。
逻辑计划需要明确SQL语句中所涉及到的表,字段,表达式等是否有效。这个的逻辑计划与在《数据库系统实现》等书中描述的逻辑查询计划不同。逻辑查询计划将SQL语句直接转为可运算的关系表达式。在OceanBase中,逻辑计划则只是查找或生成涉及到的表的ID,涉及字段的ID,涉及表达式的ID等,逻辑计划是不可运算的。
简单来说,逻辑计划要弄清楚,这条SQL可以分解为几条stmt,每条stmt包含了哪些表,字段和表达式。在此基础上,如果是insert的Stmt,要加上设置哪些值;如果是update的stmt,要加上需要更新的列和对应的值,等等。
在一个逻辑计划中,每一个查询有一个唯一标识qid,每一张表有一个唯一的标识tid,每一个列有一个唯一的标识cid,每一个表达式有一个唯一的标识eid。
来看OceanBase中的逻辑计划的结构(省略无关方法和变量).
class ObLogicalPlan
{
//...
oceanbase::common::ObVector<ObStmt*> stmts_; //存储该逻辑计划的所有stmt
oceanbase::common::ObVector<ObSqlRawExpr*> exprs_; //逻辑计划的所有表达式
oceanbase::common::ObVector<ObRawExpr*> raw_exprs_store_;//存储逻辑计划的所有表达式
uint64_t new_gen_tid_;//用于生成新的tid
uint64_t new_gen_cid_;//用于生成新的cid
uint64_t new_gen_qid_;//用于生成新的qid
uint64_t new_gen_eid_;//用于生成新的eid
};
oceanbase::common::ObVector
是OceanBase中自己实现的泛型容器之一,作用与STL的vector相同。 stmts_
存储该逻辑计划的所有stmt; raw_exprs_store_
仅仅用于存储表达式,exprs_
则引用raw_exprs_store_
中的内容。 new_gen_tid_
等4个变量是用来生成新的标识时使用,一个逻辑是可以用多个tid,多个cid,多个eid,多个qid的。这些标识分布于存储的stmt和表达式中。
注:stmt实在不知道中文该怎么称呼,就不改中文名了。
struct TableItem
{
uint64_t table_id_;
common::ObString table_name_;
common::ObString alias_name_;
TableType type_;
uint64_t ref_id_;
};
table_id_
唯一标识一个关系表,其类型分为基本表,引用表和子查询关系。
对同一个实体表,ref_id_
与table_id_
相同; 如果是一个引用别名的表,则table_id_
是新生成的,ref_id_
与这个表真正的table_id_
相同;如果是一个子查询,则table_id_
是新生成的,ref_id_
是对子查询的引用。
对同一个实体表,它在所有线程使用的table_id_
都是相同的;如果是生成的标识,则仅在该线程会话期间是唯一的。
struct ColumnItem
{
uint64_t column_id_;
common::ObString column_name_;
uint64_t table_id_;
uint64_t query_id_;
bool is_name_unique_;
bool is_group_based_;
common::ObObjType data_type_;
};
column_id_
唯一标识一个列,table_id_
和query_id_
为该列所属的关系表和stmt。is_name_unique_
仅用在解析逻辑计划期间,标记该列的名称是否在所有表的字段中都是唯一的。is_group_based_
标记该列是否用于分组。data_type_
标识该列的数据类型。
逻辑计划的中表达式有多种类型,其基类为ObRawExpr.包括两个成员变量,type_
表示表达式的类型,result_type_
表示表达式值的类型。
class ObRawExpr
{ //省略其他方法 private: ObItemType type_; common::ObObjType result_type_; }
表达式分为常量表达式, 一元引用表达式,二元引用表达式,一元操作符表达式,二元操作符表达式,三元操作符表达式,多元操作符表达式,case操作符表达式,聚集函数表达式,系统函数表达式,SQL原生表达式等。继承关系如下。
namespace sql
{
//原生表达式基类
class ObRawExpr
//常量表达式
class ObConstRawExpr : public ObRawExpr
//一元引用表达式
class ObUnaryRefRawExpr : public ObRawExpr
//二元引用表达式
class ObBinaryRefRawExpr : public ObRawExpr
//一元操作符表达式
class ObUnaryOpRawExpr : public ObRawExpr
//二元操作符表达式
class ObBinaryOpRawExpr : public ObRawExpr
//三元操作符表达式
class ObTripleOpRawExpr : public ObRawExpr
//多元操作符表达式
class ObMultiOpRawExpr : public ObRawExpr
//case操作符表达式
class ObCaseOpRawExpr : public ObRawExpr
//聚集函数表达式
class ObAggFunRawExpr : public ObRawExpr
//系统函数表达式
class ObSysFunRawExpr : public ObRawExpr
//SQL原生表达式
class ObSqlRawExpr : public ObRawExpr
};
class ObRawExpr
{
};
在ObLogicalPlan中,存储使用的是vector<ObRawExpr *>
,使用时转为vector<ObSqlRawExpr *>
.
Stmt表示一个单独的查询所包含的内容,一个逻辑计划可以包含多个Stmt.
class ObStmt
{
/*省略部分内容...*/
protected:
common::ObVector<TableItem> table_items_;
common::ObVector<ColumnItem> column_items_;
private:
StmtType type_;
uint64_t query_id_;
//uint64_t where_expr_id_;
common::ObVector<uint64_t> where_expr_ids_;
};
Stmt包括了一个查询所有的表table_items_
,列column_items_
,表达式where_expr_ids_
和一个唯一的查询标识query_id_
。注意这里存储的只有表达式的id,而不是表达式的实际内容。
从上述的定义总结来看,一个逻辑计划拥有多条查询实例Stmt和多个表达式,一个查询实例Stmt包含了多个表和多个列及所需表达式的引用。表,列,表达式,查询实例都有唯一的标识符进行标记。
ObLogicalPlan
----ObStmt : 1...n
--------TableItem : 0...n
--------ColnumItem : 0...n
--------expr_id_ref : 0...n
----ObRawExpr : 0...n
制定逻辑计划的源码在build_plan.h和build_plan.cpp中,在OceanBase0.4中,则增加了dml_build_plan.h和dml_build_plan.cpp。制定逻辑对外提供的接口只有两个,解析函数resolove
和销毁函数destroy_plan
,其他的为自用,可以浏览下其函数声明及用途,基本的结构就是这样,因为目前OceanBase中支持的SQL语句不多,相应的解析函数也比较少,还有一些没有完成,可以想见未来还会添加更多的函数。
//解析多重查询
int resolve_multi_stmt(ResultPlan* result_plan, ParseNode* node)
//解析独立表达式
int resolve_independ_expr()
//解析and表达式
int resolve_and_exprs()
//解析表达式
int resolve_expr()
//解析聚集函数
int resolve_agg_func()
//解析join表连接
int resolve_joined_table()
//解析表
int resolve_table()
//解析from子句
int resolve_from_clause()
//解析列
int resolve_table_columns()
//解析*
int resolve_star()
//解析select的投影列表
int resolve_select_clause()
//解析where子句
int resolve_where_clause()
//解析group by子句
int resolve_group_clause()
//解析having子句
int resolve_having_clause()
//解析order子句
int resolve_order_clause()
//解析limit子句
int resolve_limit_clause()
//解析select查询
int resolve_select_stmt()
//解析delete查询
int resolve_delete_stmt()
//解析insert的插入列
int resolve_insert_columns()
//解析intsert查询的插入值
int resolve_insert_values()
//解析insert查询
int resolve_insert_stmt()
//解析update查询
int resolve_update_stmt()
//解析函数。对外提供
int resolve(ResultPlan* result_plan, ParseNode* node)
//销毁函数,对外提供
extern void destroy_plan(ResultPlan* result_plan)
resolve函数根据语法树node的类型调用不同的查询解析实例。以下是部分代码摘抄:
int resolve(ResultPlan* result_plan, ParseNode* node)
{
/*...*/
uint64_t query_id = OB_INVALID_ID;
if (ret == OB_SUCCESS && node != NULL)
{
switch (node->type_)
{
case T_STMT_LIST:
{
ret = resolve_multi_stmt(result_plan, node);
break;
}
case T_SELECT:
{
ret = resolve_select_stmt(result_plan, node, query_id);
break;
}
case T_DELETE:
{
ret = resolve_delete_stmt(result_plan, node, query_id);
break;
}
case T_INSERT:
{
ret = resolve_insert_stmt(result_plan, node, query_id);
break;
}
case T_UPDATE:
{
ret = resolve_update_stmt(result_plan, node, query_id);
break;
}
default:
ret = OB_ERROR;
break;
};
}
return ret;
}
int resolve_update_stmt(ResultPlan* result_plan, ParseNode* node, uint64_t& query_id)
{
int& ret = result_plan->err_stat_.err_code_ = OB_SUCCESS;
uint64_t table_id = OB_INVALID_ID;
query_id = OB_INVALID_ID;
ObLogicalPlan* logical_plan logical_plan = new(logical_plan) ObLogicalPlan(name_pool);
result_plan->plan_tree_ = logical_plan;
update_stmt = new(update_stmt) ObUpdateStmt(name_pool);
query_id = logical_plan->generate_query_id();
//为update_stmt设置新的标识qid
update_stmt->set_query_id(query_id);
logical_plan->add_query(update_stmt);
ParseNode* table_node = node->children_[0];
//解析表
ret = resolve_table(result_plan, update_stmt, table_node, table_id);
update_stmt->set_update_table(table_id);
ParseNode* assign_list = node->children_[1];
uint64_t ref_id;
ColumnItem *column_item = NULL;
//解析要更新的列表,如:update student set sex="M",grade="2" where name = "xiaoming";
for (int32_t i = 0; ret == OB_SUCCESS && i < assign_list->num_child_; i++)
{
ParseNode* assgin_node = assign_list->children_[i];
/* resolve target column */
ParseNode* column_node = assgin_node->children_[0];
ObString column_name;
column_name.assign_ptr(
(char*)(column_node->str_value_),
static_cast<int32_t>(strlen(column_node->str_value_))
);
//1 根据列名获取列
column_item = update_stmt->get_column_item(NULL, column_name);
//2 解析列到vector<ColumnItem *>
ret = update_stmt->add_column_item(*result_plan, column_name, NULL, &column_item);
//3 增加列引用到update_stmt
ret = update_stmt->add_update_column(column_item->column_id_);
/* resolve new value expression */
//4 解析值表达式
ParseNode* expr = assgin_node->children_[1];
ret = resolve_independ_expr(result_plan, update_stmt, expr, ref_id, T_UPDATE_LIMIT);
//5 添加值表达式引用到update_stmt
ret = update_stmt->add_update_expr(ref_id)
}
//解析where子句
ret = resolve_where_clause(result_plan, update_stmt, node->children_[2]);
return ret;
}
我们仍旧以update语句为例。上面是根据源代码整理的逻辑,不是源码,主要是为了理清思路。
update_stmt
的vector<ColumnItem *>
中,并将列引用id添加到update_stmt
的更新列列表ObArray<uint64_t> update_columns_
中; ObArray<uint64_t> update_exprs_
中去; 通过上面我们知道,逻辑计划的解析的一个重要内容就是要确定查询stmt,表,列,表达式的标识.查询和表达式的标识id都可以在解析的时候生成。因为这两项不是线程共有的,但是表和列是持久的数据,可以跨线程使用同样的id。这些表和列的信息由谁来管理?
追根溯源,你会发现实体表和列的id是在ob_schema.cpp
中获取的。什么是schema?schema就是数据库对象的一个集合。网上有一个很形象的比喻,我稍微做了点改动:
什么是Database,什么是Schema,什么是Table,什么是列,什么是行,什么是User?我们可以可以把Database看作是一个大仓库,仓库分了很多很多的房间,Schema就是其中的房间,一个Schema代表一个房间,Table可以看作是每个Schema中的柜子,行和列就是柜子中的格子。User就是房间的主人。
OceanBase要求schema强类型约束,也就是要预先定义好schema。这样可以方便的进行各种online ddl操作。
OceanBase的表和列信息存储在Schema的一个hash_map中。关于Schema 以后再深入了解。
制定逻辑计划,最关键的是要理解逻辑计划的设计目标,其中最主要的内容就是确定逻辑计划中使用到的查询Stmt,表,列,表达式,并为它们生成或设置唯一标识,确保在同一个逻辑计划中是不相同的。制定逻辑计划的函数只要是reslove系列函数。而表和列的信息存储在Schema中一个hash_map中。