getExecutionEnvironment
创建一个执行环境,表示当前执行程序的上下文。如果程序是独立调的,则此方法返回本地执行文件;如果从命令行客户端调用程序以提交到集群,则次方法返回此集群的环境,也就是说,getExecutionEnvironment 会根据查询运行的方式决定返回什么样的运行环境,是最常用的一种创建执行环境的方式。
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
如果设置并行度,会以 flink-conf.vaml 中的配置为准,默认为 1。
createLocalEnvironment
返回本地执行环境,需要在调用时指定默认的并行度。
val env = StreamExecutionEnvironment.createLocalEnvironment(1)
createRemoteEnvironment
返回集群执行环境,将 Jar 提交到远程服务器。需要在调用时指定 JobManager 的 IP 和端口号,并指定要在集群中运行的 Jar 包。
val env = ExecutionEnvironment.createRemoteEnvironment("jobmanager-hostname", 6123,"C://jar//flink//wordcount.jar")
启动 zk,kafka。
创建 topic,以及启动生产者。
1 bin/kafka-topics.sh --create --partitions 3 --replication-factor 2 --topic testnew --bootstrap-server vm0:2181,vm1:2181,vm2:2181
2 bin/kafka-console-producer.sh --broker-list vm0:9092,vm1:9092,vm2:9092 --topic testnew
pom 文件
org.apache.flink
flink-connector-kafka-0.8_2.11
1.6.1
代码实现
/**
* flink 从kafka中读取数据
*/
object KafkaCousumerToflink {
def main(args: Array[String]): Unit = {
//这种可有
demo01
}
def demo01: Unit = {
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
val properties = new Properties()
properties.setProperty("bootstrap.servers", "vm2:9092")
// only required for Kafka 0.8
properties.setProperty("zookeeper.connect", "vm2:2181")
properties.setProperty("group.id", "test")
val stream = env
.addSource(new FlinkKafkaConsumer08[String]("mdj", new SimpleStringSchema(), properties))
.print()
env.execute("KafkaCousumerToflink")
}
}
Flink 提供了大量的算子操作
一. Map
输入一个参数产生一个参数,map 的功能是对输入的参数进行转换操作。
val streamMap = stream.map { x => x * 2 }
二. flatMap
输入一个参数,产生 0、1 或者多个输出,这个多用于拆分操作。
val streamFlatMap = stream.flatMap{
x => x.split(" ")
}
三. filter
结算每个元素的布尔值,并返回为 true 的元素。
val streamFilter = stream.filter{
x => x == 1
}
四. KeyBy
DataStream → KeyedStream:输入必须是Tuple类型,逻辑地将一个流拆分成不相交的分区,每个分区包含具有相同key的元素,在内部以hash的形式实现的。
注意:以下类型无法作为key。
- POJO类,且没有实现 hashCode 函数
- 任意形式的数组类型
五. Distinct
去重
六. join 和 outJoin
关联
七. cross
求笛卡尔积
八. reduce
滚动合并操作,合并当前元素和上一次合并的元素结果
//求各个渠道的累计个数
val value: DataStream[(Int, Int)] = env.fromElements((1, 2), (1, 3))
val kst: KeyedStream[(Int, Int), Tuple] = value.keyBy(0)
kst.reduce { (t1, t2) => (t1._1, t1._2 + t2._2) }.print().setParallelism(1)
env.execute()
九. fold
用一个初始的一个值,与其每个元素进行滚动合并操作。
private def myFold(env: StreamExecutionEnvironment): Unit = {
val value: DataStream[(Int, Int)] = env.fromElements((1, 2), (1, 3))
val kst: KeyedStream[(Int, Int), Tuple] = value.keyBy(0)
val ds: DataStream[String] = kst.fold("")((str, i) => {
str + “-” + i
})
ds.print()
env.execute()
}
KeyedStream --> DataStream:分组流数据的滚动聚合操作: min 和 minBy 的区别是 min 返回的是一个最小值,而 minBy 返回的是其字段中包含的最小值元素(同样原理使用与 max 和 maxBy)。
KeyedStream --> DataStream:windows 是在一个分区的 KeyedStream 中定义的,windows 根据某些特性将每个 key 的数据进行分组(例如:在 5s 内到达的数据)。
DataStream --> AllWindowedStream:Windows 可以在一个常规的 DataStream 中定义,Windows 根据某些特性对所有的流(例如:5s内到达的数据)。这个操作在很多情况下都不是并行操作的,所有的记录都会聚集到一个 windowAll 的操作任务中。
WindowedStream --> DataStream,AllWindowedStream --> DataStream:将一个通用的函数作为一个整体传递给window
WindowedStream --> DataStream:给窗口赋予一个reduce的功能,并返回一个reduce的结果。
WindowedStream --> DataStream:给窗口赋予一个fold的功能,并返回一个fold后的结果
WindowedStream --> DataStream:对 window 的元素做聚合操作,min 和 minBy 的区别是 min 返回的是最小值,而 minBy 返回的是包含最小值字段的元素。(同样原理适用于 max 和 maxBy )
DataStream --> DataStream:对两个或两个以上的 DataStream 做 union 操作,产生一个包含所有的 DataStream 元素的新 DataStream 。注意:如果将一个 DataStream 和自己做union操作,在新的 DataStream 中,将看到每个元素重复两次
private def myUnion(env: StreamExecutionEnvironment): Unit = {
//myConnAndCoMap(env)
val dsm: DataStream[Int] = env.fromElements(1, 3, 5)
val dsm01: DataStream[Int] = env.fromElements(2, 4, 6)
val unit: DataStream[Int] = dsm.union(dsm01)
unit.print()
env.execute()
}
DataStream,DataStream --> DataStream:根据给定的 key 和 window 对两个 DataStream 做 join 操作
DataStream,DataStream --> DataStream:根据一个给定的 key 和 window 对两个 DataStream 做 CoGroups 操作
DataStream,DataStream --> ConnectedStreams:连接两个保持她们类型的数据流。
12. coMap 、coFlatMap
ConnectedStreams --> DataStream:作用于 connected 数据流上,功能与 map 和 flatMap 一样
//合并以后打印
private def myConnAndCoMap(env: StreamExecutionEnvironment): Unit = {
env.setParallelism(1)
val src: DataStream[Int] = env.fromElements(1, 3, 5)
val stringMap: DataStream[String] = src.map(line => "x " + line)
val result = stringMap.connect(src).map(new CoMapFunction[String, Int, String] {
override def map2(value: Int): String = {
"x " + (value + 1)
}
override def map1(value: String): String = {
value
}
})
result.print()
env.execute()
}
SplitStream --> DataStream:从一个 SplitStream 中获取一个或多个 DataStream
private def selectAndSplit(env: StreamExecutionEnvironment): Unit = {
val dsm: DataStream[Long] = env.fromElements(1l, 2l, 3l, 4l)
val split:SplitStream[Long] = dsm.split(new OutputSelector[Long] {
override def select(out: Long): lang.Iterable[String] = {
val list = new util.ArrayList[String]()
if (out % 2 == 0) {
list.add("even")
} else {
list.add("odd")
}
list
}
})
split.select("odd").print().setParallelism(1)
env.execute()
}
DataStream --> IterativeStream --> DataStream:在流程中创建一个反馈循环,将一个操作的输出重定向到之前的操作,这对于定义持续更新模型的算法来说很有意义的。
DataStream --> DataStream:提取记录中的时间戳来跟需要事件时间的 window 一起发挥作用.
Flink + kafka
Flink 没有类似于 spark 中 foreach 方法,让用户进行迭代的操作。虽有对外的输出操作都要利用 Sink 完成。最后通过类似如下方式完成整个任务最终输出操作。
myDstream.addSink(new MySink(xxxx))
官方提供了一部分的框架的 sink。除此以外,需要用户自定义实现 sink。
创建 maven 项目,引入 pom 依赖。
org.apache.flink
flink-connector-kafka-0.8_2.11
1.6.1
代码实现
/**
* 把数据写入到kafka中
*/
object KafkaProducerFromFlink {
def main(args: Array[String]): Unit = {
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
val dsm: DataStream[String] = env.fromElements("1", "2")
val prop: Properties = new Properties()
prop.setProperty("bootstrap.servers", "vm2:9092")
val value: FlinkKafkaProducer08[String] = new FlinkKafkaProducer08("mdj", new SimpleStringSchema(), prop)
dsm.addSink(value)
env.execute()
}
}
创建 maven 工程,引入 pom
org.apache.bahir
flink-connector-redis_2.11
1.0
代码实现
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.redis.RedisSink
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig
import org.apache.flink.streaming.connectors.redis.common.mapper.{RedisCommand, RedisCommandDescription, RedisMapper}
import org.apache.flink.streaming.api.scala._
object MyRedisUtil {
def main(args: Array[String]): Unit = {
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
env.fromCollection(List(("flink","redis"))).map( x=>(x._1,x._2+"" )).addSink(MyRedisUtil.getRedisSink()).setParallelism(1)
env.execute("redissink")
}
val conf = new FlinkJedisPoolConfig.Builder().setHost("192.168.44.127").setPort(6379).build()
def getRedisSink(): RedisSink[(String,String)] ={
new RedisSink[(String,String)](conf,new MyRedisMapper)
}
class MyRedisMapper extends RedisMapper[(String,String)]{
override def getCommandDescription: RedisCommandDescription = {
// new RedisCommandDescription(RedisCommand.HSET, "channel_count")
new RedisCommandDescription(RedisCommand.SET ,"myset" )
}
override def getValueFromData(t: (String, String)): String = t._2
override def getKeyFromData(t: (String, String)): String = t._1
}
}
引入pom
org.apache.flink
flink-connector-elasticsearch6_2.11
1.7.0
org.apache.httpcomponents
httpclient
4.5.3
添加MyEsUtil
import java.util
import com.alibaba.fastjson.{JSON, JSONObject}
import org.apache.flink.api.common.functions.RuntimeContext
import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}
import org.apache.flink.streaming.connectors.elasticsearch.{ElasticsearchSinkFunction, RequestIndexer}
import org.apache.flink.streaming.connectors.elasticsearch6.ElasticsearchSink
import org.apache.http.HttpHost
import org.elasticsearch.action.index.IndexRequest
import org.elasticsearch.client.Requests
import org.apache.flink.api.scala._
/**
* flink数据下沉到es中
*/
object MyEsUtil {
def main(args: Array[String]): Unit = {
val esSink: ElasticsearchSink[String] = MyEsUtil.getElasticSearchSink("gmall0503_startup")
//获取执行的环境
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
//得到数据
val ds: DataStream[String] = env.fromCollection(List("key1", "value1"))
//下沉数据报错(数据格式不正确造成的)
ds.addSink(esSink)
env.execute()
}
val httpHosts = new util.ArrayList[HttpHost]
httpHosts.add(new HttpHost("vm0", 9200, "http"))
httpHosts.add(new HttpHost("vm1", 9200, "http"))
httpHosts.add(new HttpHost("vm2", 9200, "http"))
def getElasticSearchSink(indexName: String): ElasticsearchSink[String] = {
val esFunc = new ElasticsearchSinkFunction[String] {
override def process(element: String, ctx: RuntimeContext, indexer: RequestIndexer): Unit = {
println("试图保存:" + element)
val jsonObj: JSONObject = JSON.parseObject(element)
val indexRequest: IndexRequest = Requests.indexRequest().index(indexName).`type`("_doc").source(jsonObj)
indexer.add(indexRequest)
println("保存1条")
}
}
val sinkBuilder = new ElasticsearchSink.Builder[String](httpHosts, esFunc)
//刷新前缓冲的最大动作量
sinkBuilder.setBulkFlushMaxActions(10)
sinkBuilder.build()
}
}
引入pom
mysql
mysql-connector-java
5.1.44
com.alibaba
druid
1.1.10
添加MyJdbcSink
import java.sql.{Connection, DriverManager, PreparedStatement}
import com.bw.StreamSink.Stuents
import org.apache.flink.api.common.functions.MapFunction
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.datastream.{DataStream, SingleOutputStreamOperator}
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction
object MyJdbcSink {
def main(args: Array[String]): Unit = {
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
// val source: DataStream[String] = env.socketTextStream("vm2", 9999)
val source: DataStream[String] = env.readTextFile("d:/person.txt")
val map: SingleOutputStreamOperator[Stuents] = source.map(new MapFunction[String, Stuents]() {
override def map(value: String): Stuents = {
val split: Array[String] = value.split(",")
val stu: Stuents = new Stuents
println(split(0))
stu.setId(split(0))
stu.setName(split(1))
stu.setAge(split(2).toInt)
stu
}
})
map.addSink(new SinkToMySql())
env.execute("MyJdbcSink")
}
case class student(id: String, name: String,age:String)
class SinkToMySql() extends RichSinkFunction[Stuents] {
var conn: Connection = null;
var ps: PreparedStatement = null
val driver = "com.mysql.jdbc.Driver"
val url: String = "jdbc:mysql://vm2:3306/myflink"
val username = "root"
val password = "123456"
val maxActive = "20"
//初始化的操作
override def open(parameters: Configuration): Unit = {
super.open(parameters)
super.open(parameters)
Class.forName("com.mysql.jdbc.Driver")
conn = DriverManager.getConnection(url, username, password)
conn.setAutoCommit(false)
}
//反复调用的函数
override def invoke(value: Stuents): Unit = {
val sql: String = "insert into student(name,age) values(?,?)"
ps = conn.prepareStatement(sql)
//ps.setString(0,value.getId)
ps.setString(1,value.getName)
ps.setString(2,value.getAge.toString)
ps.execute()
conn.commit()
}
override def close(): Unit = {
super.close()
if (conn != null) {
conn.close()
}
}
}
}