mac book + pytorch+spyder CNN 深度学习水果分类器

from __future__ import print_function
from PIL import Image #从文件加载图像(python Image Library)
import os #文件操作
import sys #文件操作
import numpy as np #与torch混合使用搭建数据传输
import argparse #处理命令行参数的库

import torch.utils.data as data ##创建数据集

#水果数据预处理

class Fruit(data.Dataset):
    #初始化,定义数据内容和标签
    def __init__(self, root_dir, train=True, transform=None):
        self.root_dir = os.path.abspath(root_dir)
        self.transform = transform
        self.train=train

        if (self.train):
            self.data = np.load(os.path.join(self.root_dir, "train_data.npy"))
            self.labels = np.load(os.path.join(self.root_dir, "train_labels.npy"))
        else:
            self.data = np.load(os.path.join(self.root_dir, "validation_data.npy"))
            self.labels = np.load(os.path.join(self.root_dir, "validation_labels.npy"))

        self.data = self.data.transpose((0, 2, 3, 1))#转换底层编号
#查找数据和标签  
    def __getitem__(self, index):
       # img, target = self.data[index], self.labels[index]
        #img = Image.fromarray(img.astype('uint8'))
        img = self.data[index]
        target = self.labels[index]
        if self.transform is not None:
            img = self.transform(img)

        return img, target

#给出数据集的大小
    def __len__(self):
        return (len(self.data))

mac book + pytorch+spyder CNN 深度学习水果分类器_第1张图片

## 引入函数库
import argparse 
import os
import sys
import numpy as np
import cv2
import glob

print ("INFO: all the modules are imported.")
##功能是把你的输入参数打印到屏幕
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, required=True, help='Path to the dataset folder')
args = parser.parse_args()
##To load 64 of 94 kinds fruit from fruit-360
fruit_names = [
    'AppleBraeburn',
    'AppleGolden1',
    'AppleGolden2',
    'AppleGolden3',
    'AppleGrannySmith',
    'AppleRed1',
    'AppleRed2',
    'AppleRed3',
    'AppleRedDelicious',
    'AppleRedYellow1',
    'AppleRedYellow2',
    'Apricot',
    'Avocado',
    'Avocadoripe',
    'Banana',
    'BananaLadyFinger',
    'BananaRed',
    'Cactusfruit',
    'Cantaloupe1',
    'Cantaloupe2',
    'Carambula',
    'Cherry1',
    'Cherry2',
    'CherryRainier',
    'CherryWaxBlack',
    'CherryWaxRed',
    'CherryWaxYellow',
    'Chestnut',
    'Clementine',
    'Cocos',
    'Dates',
    'Granadilla',
    'GrapeBlue',
    'GrapefruitPink',
    'GrapefruitWhite',
    'GrapePink',
    'GrapeWhite',
    'GrapeWhite2',
    'GrapeWhite3',
    'GrapeWhite4',
    'Guava',
    'Hazelnut',
    'Huckleberry',
    'Kaki',
    'Kiwi',
    'Kumquats',
    'Lemon',
    'LemonMeyer',
    'Limes',
    'Lychee',
    'Mandarine',
    'Mango',
    'Mangostan',
    'Maracuja',
    'MelonPieldeSapo',
    'Mulberry',
    'Nectarine',
    'Orange',
    'Papaya',
    'PassionFruit',
    'Peach',
    'Peach2',
    'PeachFlat',
    'Pear',
#    'PearAbate',
#    'PearKaiser',
#    'PearMonster',
#    'PearWilliams',
#    'Pepino',
#    'Physalis',
#    'PhysaliswithHusk',
#    'Pineapple',
#    'PineappleMini',
#    'PitahayaRed',
#    'Plum',
#    'Plum2',
#    'Plum3',
#    'Pomegranate',
#    'PomeloSweetie',
#    'Quince',
#    'Rambutan',
#    'Raspberry',
#    'Salak',
#    'Strawberry',
#    'StrawberryWedge',
#    'Tamarillo',
#    'Tangelo',
#    'Tomato1',
#    'Tomato2',
#    'Tomato3',
#    'Tomato4',
#    'TomatoCherryRed',
#    'TomatoMaroon',
#    'Walnut'
]
image_path = args.dataset
print ("INFO: Training image path is : {}".format(image_path))

## Creation of training data.
train_data = []
train_labels = []

#n= 0

for fruit in fruit_names:
    print (fruit)
    folder_path = os.path.join(image_path, "Training", fruit)
    images = os.listdir(folder_path)

    for i in range(len(images)):
        final_path = os.path.join(folder_path, images[i])
        img =  cv2.imread(final_path, cv2.IMREAD_COLOR)
        dims = np.shape(img)
        img = np.reshape(img, (dims[2], dims[0], dims[1]))
        train_data.append(img)
        train_labels.append(fruit_names.index(fruit))
        #train_labels.append(int(n))
        #n+=1

train_data = np.array(train_data)
print (train_data.shape)
train_labels = np.array(train_labels)
print (train_labels.shape)

print ("OK: Training data created.")


### saving the data into a file.
np.save('train_data.npy', train_data)
check = np.load('train_data.npy')
np.save('train_labels.npy', train_labels)
check2 = np.load('train_labels.npy')

print (check.shape)
print (check2.shape)


validation_data = []
validation_labels = []

#n=0

for fruit in fruit_names:
    print (fruit)
    folder_path = os.path.join(image_path, "Test", fruit)
    images = os.listdir(folder_path)
    
    for i in range(len(images)):
        final_path = os.path.join(folder_path, images[i])
        if not os.path.isfile(final_path):
            print ("This path doeesn't exist : {}".format(final_path))
            continue
        img = cv2.imread(final_path, cv2.IMREAD_COLOR)
        dims = np.shape(img)
        img = np.reshape(img, (dims[2], dims[0], dims[1]))
        validation_data.append(img)
        validation_labels.append(fruit_names.index(fruit))
       # validation_labels.append(int(n))
        #n+=1

validation_data = np.array(validation_data)
print (validation_data.shape)
validation_labels = np.array(validation_labels)
print (validation_labels.shape)

print ("OK: Validation data created.")

### saving the data into a file.
np.save('validation_data.npy', validation_data)
check = np.load('validation_data.npy')
np.save('validation_labels.npy', validation_labels)
check2 = np.load('validation_labels.npy')
#
print (check.shape)
print (check2.shape)

print (len(fruit_names))
 

 

##网络搭建
#定义卷积神经网络
import torch
import torch.nn as nn
import torchvision
import numpy as np
from torchvision import transforms
from torch.utils.data import DataLoader #迭代器,方便多线程读取数据
import argparse
import fruit_data
import torch.nn.functional as F
from torch.autograd import Variable #Variable是最核心的变量 
from sklearn.metrics import accuracy_score

#判断当前是gpu还是cpu
device = torch.device("cuda") if (torch.cuda.is_available()) else torch.device("cpu")
print (device)

#搭建网络,定义网络单元
#Net (
#  (conv1): Conv2d(3, 64, kernel_size=(5, 5), stride=(1, 1))
#  (conv2): Conv2d(64, 64, kernel_size=(7, 7), stride=(1, 1))
#  (conv3): Conv2d(64, 64, kernel_size=(7, 7), stride=(1, 1))
#  (fc1): Linear (64 -> 120)
#  (fc2): Linear (120 -> 64)
#)
class FruitNet(nn.Module):
    def __init__(self):
        super(FruitNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, 5) #3通道,64个输出,5x5平方卷积(kerner_size)
        self.pool1 = nn.MaxPool2d(2)
        
        self.conv2 = nn.Conv2d(64,64, kernel_size=7, stride=1)
        self.pool2 = nn.MaxPool2d(3)
        
        self.conv3 = nn.Conv2d(64,64, kernel_size=7)
        self.pool3 = nn.MaxPool2d(5)
        
        self.linear1 = nn.Linear(64, 120)# an affine operation: y = Wx + b 
        self.linear2 = nn.Linear(120, 64) 

    def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))
        x = self.pool2(F.relu(self.conv2(x)))
        x = self.pool3(F.relu(self.conv3(x)))
        #view函数将张量x变形成一维向量形式,总特征数不变,为全连接层做准备  
        x = x.view(x.size(0), -1)
        x = F.relu(self.linear1(x))
        x = F.relu(self.linear2(x))

        return x


    
 ##训练网络
def train_network(dataloader_train):
    net = FruitNet()
    net = net.to(device) 
  
##定义损失函数和优化器:学习率(修改来决定执行速度)
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
     
    
    losses = []
    for epoch in range(5): #全部训练集训练6次:epoch=[0,1,2,3,4,5]
        current_loss = 0.0
        print ("Epoch : {}".format(epoch + 1))
        for i_batch, (images, labels) in enumerate(dataloader_train):
            #get the inputs
            images, labels = images.to(device), labels.to(device)
            #warp them in Variable
            x = Variable(images, requires_grad=False).float()
            y = Variable(labels, requires_grad=False).long()
            x = x.to(device)
            y = y.to(device)
            #zero the parameter gradiebts
            optimizer.zero_grad()
            
             # forward + backward + optimize
            y_pred = net(x)
            correct = y_pred.max(1)[1].eq(y).sum()
            print ("INFO: Number of correct items classified : {}".format(correct.item()))
            #loss
            loss = criterion(y_pred, y)
            print ("Loss : {}".format(loss.item()))
            #backward
            current_loss += loss.item()
            loss.backward()
            #update weights
            optimizer.step()
            losses.append(current_loss)

    ## Save the network.
    torch.save(net.state_dict(), "model/fruit_model_state_dict.pth")
    torch.save(optimizer.state_dict(), "model/fruit_model_optimizer_dict.pth")
    print ("OK: Finished training for {} epochs".format(epochs))

    return losses, net

def test_network(net, dataloader_test):
    net.eval()
    criterion = nn.CrossEntropyLoss()
    accuracies = []
    with torch.no_grad():
        for feature, label in dataloader_test:
            feature = feature.to(device)
            label = label.to(device)
            pred = net(feature)
            accuracy = accuracy_score(label.cpu().data.numpy(), pred.max(1)[1].cpu().data.numpy()) * 100
            print ("Accuracy : ", accuracy)
            loss = criterion(pred, label)
            print ("Loss : {}".format(loss.item()))
            accuracies.append(accuracy)
    
    total = 0.0
    for j in range(len(accuracies)):
        total = total + accuracies[j]
    avg_acc = total / len(accuracies)
    print ("OK: testing done with overall accuracy is : {}".format(avg_acc))
    
#DataLoader生成batch,其中参数: 
#dataset:Dataset类型,从其中加载数据 
#batch_size:int,可选。每个batch加载多少样本 
#shuffle:bool,可选。为True时表示每个epoch都对数据进行洗牌 
#sampler:Sampler,可选。从数据集中采样样本的方法。 
#num_workers:int,可选。加载数据时使用多少子进程。默认值为0,表示在主进程中加载数据。 
#drop_last:bool,可选。True表示如果最后剩下不完全的batch,丢弃。False表示不丢弃。   
def main():
    #将读入的数据进行转化:数据分布归一化到[-1,1]
    root_dir = args.data_dir
    data_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])])
    
    transformed_dataset = fruit_data.Fruit(root_dir, train=True, transform=data_transform)
    dataloader_train = DataLoader(transformed_dataset, batch_size=64, shuffle=True, num_workers=4)
    
    transformed_test_dataset = fruit_data.Fruit(root_dir, train=False, transform=data_transform)
    dataloader_test = DataLoader(transformed_test_dataset, batch_size=64, shuffle=True, num_workers=4)
    
    dataiter = iter(dataloader_train)
    images, labels = dataiter.next()
  
    print ("INFO: image shape is {}".format(images.shape))
    print ("INFO: Tensor type is : {}".format(images.type()))
    print ("INFO: labels shape is : {}".format(labels.shape))

    losses, net = train_network(dataloader_train)
    test_network (net, dataloader_test)

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--data-dir', type=str, required=True, help="Dataset directory where npy files are stored")
    parser.add_argument('--epochs', type=int, required=False, default=10, help="Number of epochs")
    args = parser.parse_args()
    epochs = args.epochs
    main()
mac book + pytorch+spyder CNN 深度学习水果分类器_第2张图片

链接:https://pan.baidu.com/s/1z-RerDtL0ehzdEeVGIHIAA  

     
 

你可能感兴趣的:(Pytorch项目)