初等数论:威尔逊定理的高斯推广之我的证明

题:威尔逊定理的高斯推广:除了 m = 4 , p t , 或 2 p t m=4,p^t,或2p^t m=4pt2pt之外,其中 p p p是奇素数, t t t是正整数,所有小于m而且和m互素的正整数的乘积同余于 1 ( m o d m ) 1 \pmod m 1(modm),而前一种情况同余于 − 1 ( m o d m ) -1 \pmod m 1(modm)(摘自《初等数论及其应用第六版》6.2节习题44,偶数答案需要联系出版社才有)

前言:书上的提示是利用同余方程覆盖集证明,表示没想明白。

设: ∏ = \prod= =所有小于m而且和m互素的正整数的乘积

证:
共同点证明:
对于任一与m互素的正整数 a a a,则对于同余方程必有解
a x ≡ 1 ( m o d m ) ⇒ ( x , m ) = 1 ax \equiv 1 \pmod m \Rightarrow (x, m) = 1 ax1(modm)(x,m)=1,不然 a a a不存在

1. m = 4 , p t , 或 2 p t 1.m=4,p^t,或2p^t 1.m=4pt2pt证明:
m = 4 ⇒ 3 ≡ − 1 ( m o d 4 ) m=4 \Rightarrow 3 \equiv -1 \pmod 4 m=431(mod4),显然成立
m = p t m = p^t m=pt
∵ \because 对于任一正整数 a a a,有 a ∈ [ 2 , m − 2 ] ⋀ ( m , a ) = 1 a \in [2, m-2] \bigwedge (m, a) = 1 a[2,m2](m,a)=1
∴ a 2 ≡ 1 ( m o d m ) ⇒ m ∣ ( a − 1 ) ( a + 1 ) \therefore a^2 \equiv 1 \pmod m \Rightarrow m \mid (a-1)(a+1) a21(modm)m(a1)(a+1)
∵ ( a + 1 , a − 1 ) = ( a + 1 , 2 ) ∈ { 1 , 2 } \because (a+1, a- 1) = (a+1, 2) \in \{1, 2\} (a+1,a1)=(a+1,2){1,2}
∴ p t ∣ ( a − 1 ) ⨁ p t ∣ ( a + 1 ) \therefore p^t \mid (a - 1) \bigoplus p^t \mid (a +1) pt(a1)pt(a+1)
∵ a − 1 ∈ [ 1 , m − 3 ] < p t ⋀ a + 1 ∈ [ 3 , m − 1 ] < p t \because a - 1 \in [1, m - 3] < p^t \bigwedge a + 1 \in [3, m-1] < p^t a1[1,m3]<pta+1[3,m1]<pt
∴ p t ∤ ( a − 1 ) ⋀ p t ∤ ( a + 1 ) \therefore p^t \nmid (a - 1) \bigwedge p^t \nmid (a + 1) pt(a1)pt(a+1)
∴ \therefore 不存在 a a a使得 a 2 ≡ 1 ( m o d m ) a^2 \equiv 1 \pmod m a21(modm)
m = 2 p t m = 2p^t m=2pt,有
∵ 2 ∣ ( a − 1 ) ⋀ p t ∣ ( a + 1 ) ⋀ ( a + 1 ) < 2 p t \because 2 \mid (a - 1) \bigwedge p^t \mid (a +1) \bigwedge (a + 1) < 2p^t 2(a1)pt(a+1)(a+1)<2pt
∴ a = p t − 1 ⇒ 2 ∤ a − 1 = p t − 2 \therefore a = p^t - 1 \Rightarrow 2 \nmid a - 1 = p^t - 2 a=pt12a1=pt2
∴ \therefore 不存在 a a a使得 a 2 ≡ 1 ( m o d m ) a^2 \equiv 1 \pmod m a21(modm)

∴ \therefore 综上,当 m = 4 ⋁ m = p t ⋁ m = 2 p t m=4 \bigvee m = p^t \bigvee m=2p^t m=4m=ptm=2pt时,每个a都有 ∃ b ∈ [ 2 , m − 2 ] ∧ b ≠ a a b ≡ 1 ( m o d m ) \exists_{b\in[2, m - 2] \wedge b \neq a}ab \equiv 1 \pmod m b[2,m2]b̸=aab1(modm),且 b b b唯一
∴ ∏ ≡ m − 1 ≡ − 1 ( m o d m ) \therefore \prod \equiv m - 1 \equiv -1 \pmod m m11(modm)

2. m ≠ 4 ⋀ m ≠ p t ⋀ m ≠ 2 p t 2.m \neq 4 \bigwedge m \neq p^t \bigwedge m \neq 2p^t 2.m̸=4m̸=ptm̸=2pt证明:
m = p 1 a 1 p 2 a 2 . . . p n a n m = p_1^{a_1}p_2^{a_2}...p_n^{a_n} m=p1a1p2a2...pnan m m m的因式分解,从小到大排列
要使得 m ∣ ( a − 1 ) ( a + 1 ) m \mid (a - 1)(a + 1) m(a1)(a+1)

m = p q ⋀ ( p , q ) = v m = pq \bigwedge (p, q) = v m=pq(p,q)=v这是存在的,因为
n ≥ 3 ⋁ ( n = 2 ⋀ p 1 > 2 ) ⋁ ( n = 2 ⋀ p 1 = 2 ⋀ a 1 > 1 ) n \geq 3 \bigvee (n = 2 \bigwedge p_1 > 2) \bigvee (n = 2 \bigwedge p_1 = 2 \bigwedge a_1 > 1) n3(n=2p1>2)(n=2p1=2a1>1)
∵ ( p , q ) = v \because (p, q) = v (p,q)=v
∴ p p ‾ ≡ 1 ( m o d b ) ⇒ p p ‾ = q y + v \therefore p\overline{p} \equiv 1 \pmod b \Rightarrow p\overline{p} = qy + v pp1(modb)pp=qy+v
∴ \therefore 存在 a = p p ‾ + q y = 2 q y + v = 2 p p ‾ − v a = p\overline{p} + qy = 2qy + v = 2p\overline{p} - v a=pp+qy=2qy+v=2ppv
∴ a − v = 2 q y ⋀ a + v = 2 p p ‾ \therefore a - v = 2qy \bigwedge a + v = 2p\overline{p} av=2qya+v=2pp
∴ n ∣ ( a − v ) ( a + v ) = 4 p q p ‾ y = 4 n p ‾ y \therefore n \mid (a - v)(a + v) = 4pq\overline{p}y = 4n\overline{p}y n(av)(a+v)=4pqpy=4npy
∴ v = 1 ⇒ a 2 ≡ 1 ( m o d m ) \therefore v = 1 \Rightarrow a^2 \equiv 1 \pmod m v=1a21(modm)

∵ ( p , q ) \because (p, q) (p,q)这样的组合有 2 n − 2 2 = 2 n − 1 − 1 \dfrac{2^n - 2}{2} = 2^{n-1} - 1 22n2=2n11,即等于所有的一个二进制串里的 1 1 1在不在,以及排除 1 1 1 m m m还有重复的(除以 2 2 2)
∵ a b ≡ − 1 ( m o d m ) \because ab \equiv -1 \pmod m ab1(modm)
∴ ∏ ≡ ( − 1 ) 2 n − 1 − 1 ∗ ( m − 1 ) ≡ ( − 1 ) 2 n − 1 − 2 ≡ 1 ( m o d m ) \therefore \prod \equiv (-1)^{2^{n-1} - 1} * (m - 1) \equiv (-1)^{2^{n-1} - 2} \equiv 1 \pmod m (1)2n11(m1)(1)2n121(modm)

这里如果将 2 p t 2p^t 2pt代入 2. 2. 2.里,可以得到 p ≡ 1 ( m o d m ) p \equiv 1 \pmod m p1(modm)

综合以上,证毕

你可能感兴趣的:(我的数论)