代码生成器是编译器中的最后一个核心模块,它主要有三个任务:指令选择,寄存器分配和指派,以及指令排序,最终将中间代码生成为目标文件。
lcc的代码生成器主要有gen.c和*.md组成,之所以由两个部分组成是因为lcc是一个被设计为可变目标编译器以支持多个架构的cpu。
同时,代码生成器虽然大部分与硬件相关,但是仍然可以提取出来一部分脱离具体硬件的逻辑。
当然,最大程度的归一化这部分逻辑得益于函数指针的合理运用。
这部分逻辑就在gen.c文件中,其他无法与cpu架构剥离的部分就由iburg通过*.md生成。
本文先分析gen.c中的内存,后续以常用的x86平台来补全对整个代码生成器的理解。
相关代码如下:
//代码生成器模块
#include "c.h"
static char rcsid[] = "$Id: gen.c,v 1.1 2002/08/28 23:12:43 drh Exp $";
#define readsreg(p) \
(generic((p)->op)==INDIR && (p)->kids[0]->op==VREG+P)
#define setsrc(d) ((d) && (d)->x.regnode && \
(d)->x.regnode->set == src->x.regnode->set && \
(d)->x.regnode->mask&src->x.regnode->mask)
#define relink(a, b) ((b)->x.prev = (a), (a)->x.next = (b))
static Symbol askfixedreg(Symbol);
static Symbol askreg(Symbol, unsigned*);
static void blkunroll(int, int, int, int, int, int, int[]);
static void docall(Node);
static void dumpcover(Node, int, int);
static void dumpregs(char *, char *, char *);
static void dumprule(int);
static void dumptree(Node);
static void genreload(Node, Symbol, int);
static void genspill(Symbol, Node, Symbol);
static Symbol getreg(Symbol, unsigned*, Node);
static int getrule(Node, int);
static void linearize(Node, Node);
static int moveself(Node);
static void prelabel(Node);
static Node* prune(Node, Node*);
static void putreg(Symbol);
static void ralloc(Node);
static void reduce(Node, int);
static int reprune(Node*, int, int, Node);
static int requate(Node);
static Node reuse(Node, int);
static void rewrite(Node);
static Symbol spillee(Symbol, unsigned mask[], Node);
static void spillr(Symbol, Node);
static int uses(Node, Regnode);
int offset;//最后一个自动变量偏移量的绝对值
int maxoffset;
int framesize;
int argoffset;
int maxargoffset;
int dalign, salign;//源块和目标块的对齐字节数
int bflag = 0; /* omit */
int dflag = 0;
int swap;
unsigned (*emitter)(Node, int) = emitasm;
static char NeedsReg[] = {
0, /* unused */
1, /* CNST */
0, 0, /* ARG ASGN */
1, /* INDIR */
0, 0, 1, 1, /* - - CVF CVI */
1, 0, 1, 1, /* CVP - CVU NEG */
1, /* CALL */
1, /* LOAD */
0, /* RET */
1, 1, 1, /* ADDRG ADDRF ADDRL */
1, 1, 1, 1, 1, /* ADD SUB LSH MOD RSH */
1, 1, 1, 1, /* BAND BCOM BOR BXOR */
1, 1, /* DIV MUL */
0, 0, 0, 0, 0, 0, /* EQ GE GT LE LT NE */
0, 0 /* JUMP LABEL */
};
Node head;
unsigned freemask[2];
unsigned usedmask[2];
unsigned tmask[2];
unsigned vmask[2];
Symbol mkreg(char *fmt, int n, int mask, int set) {
Symbol p;
NEW0(p, PERM);
p->name = p->x.name = stringf(fmt, n);
NEW0(p->x.regnode, PERM);
p->x.regnode->number = n;
p->x.regnode->mask = mask<x.regnode->set = set;
return p;
}
Symbol mkwildcard(Symbol *syms) {
Symbol p;
NEW0(p, PERM);
p->name = p->x.name = "wildcard";
p->x.wildcard = syms;
return p;
}
//对齐栈空间,以便安排下一个栈帧
void mkauto(Symbol p) {
assert(p->sclass == AUTO);
offset = roundup(offset + p->type->size, p->type->align);
p->x.offset = -offset;
p->x.name = stringd(-offset);
}
//保存当前栈的偏移量以及每一个寄存器的分配状态
void blockbeg(Env *e) {
e->offset = offset;
e->freemask[IREG] = freemask[IREG];
e->freemask[FREG] = freemask[FREG];
}
//恢复偏移量以及寄存器状态
void blockend(Env *e) {
if (offset > maxoffset)
maxoffset = offset;
offset = e->offset;
freemask[IREG] = e->freemask[IREG];
freemask[FREG] = e->freemask[FREG];
}
//对齐并更新argooffset(参数构建区偏移量)
int mkactual(int align, int size) {
int n = roundup(argoffset, align);
argoffset = n + size;
return n;
}
//处理参数列表结束的CALL节点
//为下一个参数集合清除argoffset值,
//计算出最大的输出参数块的大小并存于maxargoffset中
static void docall(Node p) {
p->syms[1] = p->syms[0];
//记录当前调用参数块的大小,必要的时候可由调用者弹出
p->syms[0] = intconst(argoffset);
if (argoffset > maxargoffset)
maxargoffset = argoffset;
argoffset = 0;
}
//块复制代码生成器入口,产生代码,完成在主存中赋值size个字节的功能
//源地址通过寄存器sreg和偏移量soff相加得到
//目的地址通过dreg和doff相加得到
//tmp
void blkcopy(int dreg, int doff, int sreg, int soff, int size, int tmp[]) {
assert(size >= 0);
if (size == 0)
return;
else if (size <= 2)
blkunroll(size, dreg, doff, sreg, soff, size, tmp);
else if (size == 3) {
blkunroll(2, dreg, doff, sreg, soff, 2, tmp);
blkunroll(1, dreg, doff+2, sreg, soff+2, 1, tmp);
}
else if (size <= 16) {//如果4到16个字节,将size向下取整为4的倍数
blkunroll(4, dreg, doff, sreg, soff, size&~3, tmp);//每次复制4个字节
blkcopy(dreg, doff+(size&~3),
sreg, soff+(size&~3), size&3, tmp);
}
else//大于16字节,直接调用blkloop
(*IR->x.blkloop)(dreg, doff, sreg, soff, size, tmp);
}
static void blkunroll(int k, int dreg, int doff, int sreg, int soff, int size, int tmp[]) {
int i;
assert(IR->x.max_unaligned_load);
if (k > IR->x.max_unaligned_load
&& (k > salign || k > dalign))
k = IR->x.max_unaligned_load;
for (i = 0; i+k < size; i += 2*k) {
//交替调用blkfetch和blkstore,每次赋值k字节
(*IR->x.blkfetch)(k, soff+i, sreg, tmp[0]);
(*IR->x.blkfetch)(k, soff+i+k, sreg, tmp[1]);
(*IR->x.blkstore)(k, doff+i, dreg, tmp[0]);
(*IR->x.blkstore)(k, doff+i+k, dreg, tmp[1]);
}
if (i < size) {
//size不能整除k
(*IR->x.blkfetch)(k, i+soff, sreg, tmp[0]);
(*IR->x.blkstore)(k, i+doff, dreg, tmp[0]);
}
}
//解析影响代码生成的命令行选项,如-d/-b
void parseflags(int argc, char *argv[]) {
int i;
for (i = 0; i < argc; i++)
if (strcmp(argv[i], "-d") == 0)
dflag = 1;
else if (strcmp(argv[i], "-b") == 0) /* omit */
bflag = 1; /* omit */
}
static int getrule(Node p, int nt) {
int rulenum;
assert(p);
rulenum = (*IR->x._rule)(p->x.state, nt);
if (!rulenum) {
fprint(stderr, "(%x->op=%s at %w is corrupt.)\n", p, opname(p->op), &src);
assert(0);
}
return rulenum;
}
static void reduce(Node p, int nt) {
int rulenum, i;
short *nts;
Node kids[10];
p = reuse(p, nt);
rulenum = getrule(p, nt);
nts = IR->x._nts[rulenum];
(*IR->x._kids)(p, rulenum, kids);
for (i = 0; nts[i]; i++)
reduce(kids[i], nts[i]);
if (IR->x._isinstruction[rulenum]) {
assert(p->x.inst == 0 || p->x.inst == nt);
p->x.inst = nt;
if (p->syms[RX] && p->syms[RX]->temporary) {
debug(fprint(stderr, "(using %s)\n", p->syms[RX]->name));
p->syms[RX]->x.usecount++;
}
}
}
static Node reuse(Node p, int nt) {
struct _state {
short cost[1];
};
Symbol r = p->syms[RX];
if (generic(p->op) == INDIR && p->kids[0]->op == VREG+P
&& r->u.t.cse && p->x.mayrecalc
&& ((struct _state*)r->u.t.cse->x.state)->cost[nt] == 0)
return r->u.t.cse;
else
return p;
}
int mayrecalc(Node p) {
int op;
assert(p && p->syms[RX]);
if (p->syms[RX]->u.t.cse == NULL)
return 0;
op = generic(p->syms[RX]->u.t.cse->op);
if (op == CNST || op == ADDRF || op == ADDRG || op == ADDRL) {
p->x.mayrecalc = 1;
return 1;
} else
return 0;
}
static Node *prune(Node p, Node pp[]) {
if (p == NULL)
return pp;
p->x.kids[0] = p->x.kids[1] = p->x.kids[2] = NULL;
if (p->x.inst == 0)
return prune(p->kids[1], prune(p->kids[0], pp));
else if (p->syms[RX] && p->syms[RX]->temporary
&& p->syms[RX]->x.usecount < 2) {
p->x.inst = 0;
debug(fprint(stderr, "(clobbering %s)\n", p->syms[RX]->name));
return prune(p->kids[1], prune(p->kids[0], pp));
}
else {
prune(p->kids[1], prune(p->kids[0], &p->x.kids[0]));
*pp = p;
return pp + 1;
}
}
#define ck(i) return (i) ? 0 : LBURG_MAX
int range(Node p, int lo, int hi) {
Symbol s = p->syms[0];
switch (specific(p->op)) {
case ADDRF+P:
case ADDRL+P: ck(s->x.offset >= lo && s->x.offset <= hi);
case CNST+I: ck(s->u.c.v.i >= lo && s->u.c.v.i <= hi);
case CNST+U: ck(s->u.c.v.u >= lo && s->u.c.v.u <= hi);
case CNST+P: ck(s->u.c.v.p == 0 && lo <= 0 && hi >= 0);
}
return LBURG_MAX;
}
static void dumptree(Node p) {
if (p->op == VREG+P && p->syms[0]) {
fprint(stderr, "VREGP(%s)", p->syms[0]->name);
return;
} else if (generic(p->op) == LOAD) {
fprint(stderr, "LOAD(");
dumptree(p->kids[0]);
fprint(stderr, ")");
return;
}
fprint(stderr, "%s(", opname(p->op));
switch (generic(p->op)) {
case CNST: case LABEL:
case ADDRG: case ADDRF: case ADDRL:
if (p->syms[0])
fprint(stderr, "%s", p->syms[0]->name);
break;
case RET:
if (p->kids[0])
dumptree(p->kids[0]);
break;
case CVF: case CVI: case CVP: case CVU: case JUMP:
case ARG: case BCOM: case NEG: case INDIR:
dumptree(p->kids[0]);
break;
case CALL:
if (optype(p->op) != B) {
dumptree(p->kids[0]);
break;
}
/* else fall thru */
case EQ: case NE: case GT: case GE: case LE: case LT:
case ASGN: case BOR: case BAND: case BXOR: case RSH: case LSH:
case ADD: case SUB: case DIV: case MUL: case MOD:
dumptree(p->kids[0]);
fprint(stderr, ", ");
dumptree(p->kids[1]);
break;
default: assert(0);
}
fprint(stderr, ")");
}
static void dumpcover(Node p, int nt, int in) {
int rulenum, i;
short *nts;
Node kids[10];
p = reuse(p, nt);
rulenum = getrule(p, nt);
nts = IR->x._nts[rulenum];
fprint(stderr, "dumpcover(%x) = ", p);
for (i = 0; i < in; i++)
fprint(stderr, " ");
dumprule(rulenum);
(*IR->x._kids)(p, rulenum, kids);
for (i = 0; nts[i]; i++)
dumpcover(kids[i], nts[i], in+1);
}
static void dumprule(int rulenum) {
assert(rulenum);
fprint(stderr, "%s / %s", IR->x._string[rulenum],
IR->x._templates[rulenum]);
if (!IR->x._isinstruction[rulenum])
fprint(stderr, "\n");
}
//解释汇编模板,输出大部分指令,其中太过于复杂的指令调用x86linux.c中的emit2输出
unsigned emitasm(Node p, int nt) {
int rulenum;
short *nts;
char *fmt;
Node kids[10];
p = reuse(p, nt);
rulenum = getrule(p, nt);
nts = IR->x._nts[rulenum];
fmt = IR->x._templates[rulenum];
assert(fmt);
if (IR->x._isinstruction[rulenum] && p->x.emitted)
print("%s", p->syms[RX]->x.name);
else if (*fmt == '#')
(*IR->x.emit2)(p);
else {
if (*fmt == '?') {
fmt++;
assert(p->kids[0]);
if (p->syms[RX] == p->x.kids[0]->syms[RX])
while (*fmt++ != '\n')
;
}
for ((*IR->x._kids)(p, rulenum, kids); *fmt; fmt++)
if (*fmt != '%')
(void)putchar(*fmt);
else if (*++fmt == 'F')
print("%d", framesize);
else if (*fmt >= '0' && *fmt <= '9')
emitasm(kids[*fmt - '0'], nts[*fmt - '0']);
else if (*fmt >= 'a' && *fmt < 'a' + NELEMS(p->syms))
fputs(p->syms[*fmt - 'a']->x.name, stdout);
else
(void)putchar(*fmt);
}
return 0;
}
//追溯指令列表,驱动emitasm,供emitcode调用
void emit(Node p) {
for (; p; p = p->x.next) {
assert(p->x.registered);
if (p->x.equatable && requate(p) || moveself(p))
;
else
//下面代码实际等于emitasm(p, p->x.inst)
(*emitter)(p, p->x.inst);
p->x.emitted = 1;
}
}
static int moveself(Node p) {
return p->x.copy
&& p->syms[RX]->x.name == p->x.kids[0]->syms[RX]->x.name;
}
int move(Node p) {
p->x.copy = 1;
return 1;
}
static int requate(Node q) {
Symbol src = q->x.kids[0]->syms[RX];
Symbol tmp = q->syms[RX];
Node p;
int n = 0;
debug(fprint(stderr, "(requate(%x): tmp=%s src=%s)\n", q, tmp->x.name, src->x.name));
for (p = q->x.next; p; p = p->x.next)
if (p->x.copy && p->syms[RX] == src
&& p->x.kids[0]->syms[RX] == tmp)
debug(fprint(stderr, "(requate arm 0 at %x)\n", p)),
p->syms[RX] = tmp;
else if (setsrc(p->syms[RX]) && !moveself(p) && !readsreg(p))
return 0;
else if (p->x.spills)
return 0;
else if (generic(p->op) == CALL && p->x.next)
return 0;
else if (p->op == LABEL+V && p->x.next)
return 0;
else if (p->syms[RX] == tmp && readsreg(p))
debug(fprint(stderr, "(requate arm 5 at %x)\n", p)),
n++;
else if (p->syms[RX] == tmp)
break;
debug(fprint(stderr, "(requate arm 7 at %x)\n", p));
assert(n > 0);
for (p = q->x.next; p; p = p->x.next)
if (p->syms[RX] == tmp && readsreg(p)) {
p->syms[RX] = src;
if (--n <= 0)
break;
}
return 1;
}
//
static void prelabel(Node p) {
if (p == NULL)
return;
prelabel(p->kids[0]);
prelabel(p->kids[1]);
if (NeedsReg[opindex(p->op)])
setreg(p, (*IR->x.rmap)(opkind(p->op)));
switch (generic(p->op)) {
case ADDRF: case ADDRL:
if (p->syms[0]->sclass == REGISTER)
p->op = VREG+P;
break;
case INDIR:
if (p->kids[0]->op == VREG+P)
setreg(p, p->kids[0]->syms[0]);
break;
case ASGN:
if (p->kids[0]->op == VREG+P)
rtarget(p, 1, p->kids[0]->syms[0]);
break;
case CVI: case CVU: case CVP:
if (optype(p->op) != F
&& opsize(p->op) <= p->syms[0]->u.c.v.i)
p->op = LOAD + opkind(p->op);
break;
}
(IR->x.target)(p);
}
void setreg(Node p, Symbol r) {
p->syms[RX] = r;
}
void rtarget(Node p, int n, Symbol r) {
Node q = p->kids[n];
assert(q);
assert(r);
assert(r->sclass == REGISTER || !r->x.wildcard);
assert(q->syms[RX]);
if (r != q->syms[RX] && !q->syms[RX]->x.wildcard) {
q = newnode(LOAD + opkind(q->op),
q, NULL, q->syms[0]);
if (r->u.t.cse == p->kids[n])
r->u.t.cse = q;
p->kids[n] = p->x.kids[n] = q;
q->x.kids[0] = q->kids[0];
}
setreg(q, r);
debug(fprint(stderr, "(targeting %x->x.kids[%d]=%x to %s)\n", p, n, p->kids[n], r->x.name));
}
//
static void rewrite(Node p) {
assert(p->x.inst == 0);
prelabel(p);
debug(dumptree(p));
debug(fprint(stderr, "\n"));
(*IR->x._label)(p);
debug(dumpcover(p, 1, 0));
reduce(p, 1);
}
Node gen(Node forest) {
int i;
struct node sentinel;
Node dummy, p;
head = forest;
for (p = forest; p; p = p->link) {
assert(p->count == 0);
if (generic(p->op) == CALL)
docall(p);
else if ( generic(p->op) == ASGN
&& generic(p->kids[1]->op) == CALL)
docall(p->kids[1]);
else if (generic(p->op) == ARG)
(*IR->x.doarg)(p);
rewrite(p);
p->x.listed = 1;
}
for (p = forest; p; p = p->link)
prune(p, &dummy);
relink(&sentinel, &sentinel);
for (p = forest; p; p = p->link)
linearize(p, &sentinel);
forest = sentinel.x.next;
assert(forest);
sentinel.x.next->x.prev = NULL;
sentinel.x.prev->x.next = NULL;
for (p = forest; p; p = p->x.next)
for (i = 0; i < NELEMS(p->x.kids) && p->x.kids[i]; i++) {
assert(p->x.kids[i]->syms[RX]);
if (p->x.kids[i]->syms[RX]->temporary) {
p->x.kids[i]->x.prevuse =
p->x.kids[i]->syms[RX]->x.lastuse;
p->x.kids[i]->syms[RX]->x.lastuse = p->x.kids[i];
}
}
for (p = forest; p; p = p->x.next) {
ralloc(p);
if (p->x.listed && NeedsReg[opindex(p->op)]
&& (*IR->x.rmap)(opkind(p->op))) {
assert(generic(p->op) == CALL || generic(p->op) == LOAD);
putreg(p->syms[RX]);
}
}
return forest;
}
int notarget(Node p) {
return p->syms[RX]->x.wildcard ? 0 : LBURG_MAX;
}
//释放寄存器,加入空闲队列
static void putreg(Symbol r) {
assert(r && r->x.regnode);
freemask[r->x.regnode->set] |= r->x.regnode->mask;
debug(dumpregs("(freeing %s)\n", r->x.name, NULL));
}
//
static Symbol askfixedreg(Symbol s) {
Regnode r = s->x.regnode;
int n = r->set;
if (r->mask&~freemask[n])//寄存器已经被使用
return NULL;
else {//标记寄存器为已经分配并返回
freemask[n] &= ~r->mask;
usedmask[n] |= r->mask;
return s;
}
}
//获取寄存器
static Symbol askreg(Symbol rs, unsigned rmask[]) {
int i;
if (rs->x.wildcard == NULL)//是否需要分配寄存器
return askfixedreg(rs);
for (i = 31; i >= 0; i--) {
Symbol r = rs->x.wildcard[i];
if (r != NULL
&& !(r->x.regnode->mask&~rmask[r->x.regnode->set])
&& askfixedreg(r))
return r;
}
return NULL;
}
static Symbol getreg(Symbol s, unsigned mask[], Node p) {
Symbol r = askreg(s, mask);//申请一个寄存器
if (r == NULL) {//没有获取到寄存器
//先将前面的寄存器值保存到内存
r = spillee(s, mask, p);
assert(r && r->x.regnode);
//再将寄存器分配出来使用
spill(r->x.regnode->mask, r->x.regnode->set, p);
//重新获取寄存器
r = askreg(s, mask);
}
assert(r && r->x.regnode);
r->x.regnode->vbl = NULL;
return r;
}
//分配寄存器
int askregvar(Symbol p, Symbol regs) {
Symbol r;
assert(p);
if (p->sclass != REGISTER)//如果符号存储类似不能为寄存器
return 0;
//枚举
else if (!isscalar(p->type)) {
p->sclass = AUTO;
return 0;
}
//临时变量
else if (p->temporary) {
p->x.name = "?";
return 1;
}
//其他情况,分配寄存器
else if ((r = askreg(regs, vmask)) != NULL) {
p->x.regnode = r->x.regnode;
p->x.regnode->vbl = p;
p->x.name = r->x.name;
debug(dumpregs("(allocating %s to symbol %s)\n", p->x.name, p->name));
return 1;
}
else {
p->sclass = AUTO;
return 0;
}
}
static void linearize(Node p, Node next) {
int i;
for (i = 0; i < NELEMS(p->x.kids) && p->x.kids[i]; i++)
linearize(p->x.kids[i], next);
relink(next->x.prev, p);
relink(p, next);
debug(fprint(stderr, "(listing %x)\n", p));
}
static void ralloc(Node p) {
int i;
unsigned mask[2];
mask[0] = tmask[0];
mask[1] = tmask[1];
assert(p);
debug(fprint(stderr, "(rallocing %x)\n", p));
for (i = 0; i < NELEMS(p->x.kids) && p->x.kids[i]; i++) {
Node kid = p->x.kids[i];
Symbol r = kid->syms[RX];
assert(r && kid->x.registered);
if (r->sclass != REGISTER && r->x.lastuse == kid)
putreg(r);
}
if (!p->x.registered && NeedsReg[opindex(p->op)]
&& (*IR->x.rmap)(opkind(p->op))) {
Symbol sym = p->syms[RX], set = sym;
assert(sym);
if (sym->temporary)
set = (*IR->x.rmap)(opkind(p->op));
assert(set);
if (set->sclass != REGISTER) {
Symbol r;
if (*IR->x._templates[getrule(p, p->x.inst)] == '?')
for (i = 1; i < NELEMS(p->x.kids) && p->x.kids[i]; i++) {
Symbol r = p->x.kids[i]->syms[RX];
assert(p->x.kids[i]->x.registered);
assert(r && r->x.regnode);
assert(sym->x.wildcard || sym != r);
mask[r->x.regnode->set] &= ~r->x.regnode->mask;
}
r = getreg(set, mask, p);
if (sym->temporary) {
Node q;
r->x.lastuse = sym->x.lastuse;
for (q = sym->x.lastuse; q; q = q->x.prevuse) {
q->syms[RX] = r;
q->x.registered = 1;
if (sym->u.t.cse && q->x.copy)
q->x.equatable = 1;
}
} else {
p->syms[RX] = r;
r->x.lastuse = p;
}
debug(dumpregs("(allocating %s to node %x)\n", r->x.name, (char *) p));
}
}
p->x.registered = 1;
(*IR->x.clobber)(p);
}
//在寄存器全部被占用的时候,计算最适合保存到内存中的寄存器
static Symbol spillee(Symbol set, unsigned mask[], Node here) {
Symbol bestreg = NULL;
int bestdist = -1, i;
assert(set);
if (!set->x.wildcard)
bestreg = set;
else {
for (i = 31; i >= 0; i--) {
Symbol ri = set->x.wildcard[i];
if (
ri != NULL &&
ri->x.lastuse &&
(ri->x.regnode->mask&tmask[ri->x.regnode->set]&mask[ri->x.regnode->set])
) {
Regnode rn = ri->x.regnode;
Node q = here;
int dist = 0;
for (; q && !uses(q, rn); q = q->x.next)
dist++;
if (q && dist > bestdist) {
bestdist = dist;
bestreg = ri;
}
}
}
}
assert(bestreg); /* Must be able to spill something. Reconfigure the register allocator
to ensure that we can allocate a register for all nodes without spilling
the node's necessary input regs. */
assert(bestreg->x.regnode->vbl == NULL); /* Can't spill register variables because
the reload site might be in other blocks. Reconfigure the register allocator
to ensure that this register is never allocated to a variable. */
return bestreg;
}
static int uses(Node p, Regnode rn) {
int i;
for (i = 0; i < NELEMS(p->x.kids); i++)
if (
p->x.kids[i] &&
p->x.kids[i]->x.registered &&
rn->set == p->x.kids[i]->syms[RX]->x.regnode->set &&
(rn->mask&p->x.kids[i]->syms[RX]->x.regnode->mask)
)
return 1;
return 0;
}
static void spillr(Symbol r, Node here) {
int i;
Symbol tmp;
Node p = r->x.lastuse;
assert(p);
while (p->x.prevuse)
assert(r == p->syms[RX]),
p = p->x.prevuse;
assert(p->x.registered && !readsreg(p));
tmp = newtemp(AUTO, optype(p->op), opsize(p->op));
genspill(r, p, tmp);//将寄存器值写入内存
for (p = here->x.next; p; p = p->x.next)
for (i = 0; i < NELEMS(p->x.kids) && p->x.kids[i]; i++) {
Node k = p->x.kids[i];
if (k->x.registered && k->syms[RX] == r)
genreload(p, tmp, i);//重新将寄存器读出
}
putreg(r);//将寄存器放入空闲队列
}
//生成保存寄存器值到内存的代码
static void genspill(Symbol r, Node last, Symbol tmp) {
Node p, q;
Symbol s;
unsigned ty;
debug(fprint(stderr, "(spilling %s to local %s)\n", r->x.name, tmp->x.name));
debug(fprint(stderr, "(genspill: "));
debug(dumptree(last));
debug(fprint(stderr, ")\n"));
ty = opkind(last->op);
NEW0(s, FUNC);
s->sclass = REGISTER;
s->name = s->x.name = r->x.name;
s->x.regnode = r->x.regnode;
q = newnode(ADDRL+P + sizeop(IR->ptrmetric.size), NULL, NULL, s);
q = newnode(INDIR + ty, q, NULL, NULL);
p = newnode(ADDRL+P + sizeop(IR->ptrmetric.size), NULL, NULL, tmp);
p = newnode(ASGN + ty, p, q, NULL);
p->x.spills = 1;
rewrite(p);
prune(p, &q);
q = last->x.next;
linearize(p, q);
for (p = last->x.next; p != q; p = p->x.next) {
ralloc(p);
assert(!p->x.listed || !NeedsReg[opindex(p->op)] || !(*IR->x.rmap)(opkind(p->op)));
}
}
//生成从内存中取回这个寄存器的值的代码
static void genreload(Node p, Symbol tmp, int i) {
Node q;
int ty;
debug(fprint(stderr, "(replacing %x with a reload from %s)\n", p->x.kids[i], tmp->x.name));
debug(fprint(stderr, "(genreload: "));
debug(dumptree(p->x.kids[i]));
debug(fprint(stderr, ")\n"));
ty = opkind(p->x.kids[i]->op);
q = newnode(ADDRL+P + sizeop(IR->ptrmetric.size), NULL, NULL, tmp);
p->x.kids[i] = newnode(INDIR + ty, q, NULL, NULL);
rewrite(p->x.kids[i]);
prune(p->x.kids[i], &q);
reprune(&p->kids[1], reprune(&p->kids[0], 0, i, p), i, p);
prune(p, &q);
linearize(p->x.kids[i], p);
}
static int reprune(Node *pp, int k, int n, Node p) {
struct node x, *q = *pp;
if (q == NULL || k > n)
return k;
else if (q->x.inst == 0)
return reprune(&q->kids[1],
reprune(&q->kids[0], k, n, p), n, p);
if (k == n) {
debug(fprint(stderr, "(reprune changes %x from %x to %x)\n", pp, *pp, p->x.kids[n]));
*pp = p->x.kids[n];
x = *p;
(IR->x.target)(&x);
}
return k + 1;
}
//保存寄存器的值到内存,然后标记此寄存器可用
void spill(unsigned mask, int n, Node here) {
int i;
Node p;
here->x.spills = 1;
usedmask[n] |= mask;
if (mask&~freemask[n]) {
assert( /* It makes no sense for a node to clobber() its target. */
here->x.registered == 0 || /* call isn't coming through clobber() */
here->syms[RX] == NULL ||
here->syms[RX]->x.regnode == NULL ||
here->syms[RX]->x.regnode->set != n ||
(here->syms[RX]->x.regnode->mask&mask) == 0
);
for (p = here; p; p = p->x.next)
for (i = 0; i < NELEMS(p->x.kids) && p->x.kids[i]; i++) {
Symbol r = p->x.kids[i]->syms[RX];
assert(r);
if (p->x.kids[i]->x.registered && r->x.regnode->set == n
&& r->x.regnode->mask&mask)
spillr(r, here);
}
}
}
static void dumpregs(char *msg, char *a, char *b) {
fprint(stderr, msg, a, b);
fprint(stderr, "(free[0]=%x)\n", freemask[0]);
fprint(stderr, "(free[1]=%x)\n", freemask[1]);
}
int getregnum(Node p) {
assert(p && p->syms[RX] && p->syms[RX]->x.regnode);
return p->syms[RX]->x.regnode->number;
}
unsigned regloc(Symbol p) {
assert(p && p->sclass == REGISTER && p->sclass == REGISTER && p->x.regnode);
return p->x.regnode->set<<8 | p->x.regnode->number;
}