文章来自公众号【机器学习炼丹术】
焦点损失函数 Focal Loss(2017年何凯明大佬的论文)被提出用于密集物体检测任务。
当然,在目标检测中,可能待检测物体有1000个类别,然而你想要识别出来的物体,只是其中的某一个类别,这样其实就是一个样本非常不均衡的一个分类问题。
而Focal Loss简单的说,就是解决样本数量极度不平衡的问题的。
说到样本不平衡的解决方案,相比大家是知道一个混淆矩阵的f1-score的,但是这个好像不能用在训练中当成损失。而Focal loss可以在训练中,让小数量的目标类别增加权重,让分类错误的样本增加权重。
【然后看focal loss的改进】:
这个增加了一个 ( 1 − y ′ ) γ (1-y')^\gamma (1−y′)γ的权重值,怎么理解呢?就是如果给出的正确类别的概率越大,那么 ( 1 − y ′ ) γ (1-y')^\gamma (1−y′)γ就会越小,说明分类正确的样本的损失权重小,反之,分类错误的样本的损权重大。
【focal loss的进一步改进】:
这里增加了一个 α \alpha α,这个alpha在论文中给出的是0.25,这个就是单纯的降低正样本或者负样本的权重,来解决样本不均衡的问题。
两者结合起来,就是一个可以解决样本不平衡问题的损失focal loss。
【总结】:
这个GHM是为了解决Focal loss存在的一些问题。
【Focal Loss的弊端1】
让模型过多的关注特别难分类的样本是会有问题的。样本中有一些异常点、离群点(outliers)。所以模型为了拟合这些非常难拟合的离群点,就会存在过拟合的风险。
Focal Loss是从置信度p的角度入手衰减loss的。而GHM是一定范围内置信度p的样本数量来衰减loss的。
首先定义了一个变量g,叫做梯度模长(gradient norm):
可以看出这个梯度模长,其实就是模型给出的置信度 p ∗ p^* p∗与这个样本真实的标签之间的差值(距离)。g越小,说明预测越准,说明样本越容易分类。
【从图中可以看到】
GHM是这样想的,对于梯度模长小的易分类样本,我们忽视他们;但是focal loss过于关注难分类样本了。关键是难分类样本其实也有很多!,如果模型一直学习难分类样本,那么可能模型的精确度就会下降。所以GHM对于难分类样本也有一个衰减。
那么,GHM对易分类样本和难分类样本都衰减,那么真正被关注的样本,就是那些不难不易的样本。而抑制的程度,可以根据样本的数量来决定。
这里定义一个GD,梯度密度:
G D ( g ) = 1 l ( g ) ∑ k = 1 N δ ( g k , g ) GD(g)=\frac{1}{l(g)}\sum_{k=1}^N{\delta(g_k,g)} GD(g)=l(g)1k=1∑Nδ(gk,g)
总之, G D ( g ) GD(g) GD(g)就是梯度模长在 [ g − ϵ 2 , g + ϵ 2 ] [g-\frac{\epsilon}{2},g+\frac{\epsilon}{2}] [g−2ϵ,g+2ϵ]内的样本总数除以 ϵ \epsilon ϵ.
然后把每一个样本的交叉熵损失除以他们对应的梯度密度就行了。
L G H M = ∑ i = 1 N C E ( p i , p i ∗ ) G D ( g i ) L_{GHM}=\sum^N_{i=1}{\frac{CE(p_i,p_i^*)}{GD(g_i)}} LGHM=i=1∑NGD(gi)CE(pi,pi∗)
论文中呢,是把梯度模长划分成了10个区域,因为置信度p是从0~1的,所以梯度密度的区域长度就是0.1,比如是0~0.1为一个区域。
【从图中可以得到】
当然可以想到的是,GHM看起来是需要整个样本的模型估计值,才能计算出梯度密度,才能进行更新。也就是说mini-batch看起来似乎不能用GHM。
在GHM原文中也提到了这个问题,如果光使用mini-batch的话,那么很可能出现不均衡的情况。
【我个人觉得的处理方法】
上面讲述的关键在于focal loss实现的功能:
在CenterNet中预测中心点位置的时候,也是使用了Focal Loss,但是稍有改动。
下面通过代码来理解:
class FocalLoss(nn.Module):
def __init__(self):
super().__init__()
self.neg_loss = _neg_loss
def forward(self, output, target, mask):
output = torch.sigmoid(output)
loss = self.neg_loss(output, target, mask)
return loss
这里面的output可以理解为是一个1通道的特征图,每一个pixel的值都是模型给出的置信度,然后通过sigmoid函数转换成0~1区间的置信度。
而target是CenterNet的热力图,这一点可能比较难理解。打个比方,一个10*10的全都是0的特征图,然后这个特征图中只有一个pixel是1,那么这个pixel的位置就是一个目标检测物体的中心点。有几个1就说明这个图中有几个要检测的目标物体。
然后,如果一个特征图上,全都是0,只有几个孤零零的1,未免显得过于稀疏了,直观上也非常的不平滑。所以CenterNet的热力图还需要对这些1为中心做一个高斯
可以看作是一种平滑:
可以看到,数字1的四周是同样的数字。这是一个以1为中心的高斯平滑。
这里我们回到上面说到的 ( 1 − Y ) β (1-Y)^\beta (1−Y)β:
对于数字1来说,我们计算loss自然是用第一行来计算,但是对于1附近的其他点来说,就要考虑 ( 1 − Y ) β (1-Y)^\beta (1−Y)β了。越靠近1的点的 Y Y Y越大,那么 ( 1 − Y ) β (1-Y)^\beta (1−Y)β就会越小,这样从而降低1附近的权重值。其实这里我也讲不太明白,就是根据距离1的距离降低负样本的权重值,从而可以实现样本过多的类别的权重较小。
我们回到主题,对output进行sigmoid之后,与output一起放到了neg_loss中。我们来看什么是neg_loss:
def _neg_loss(pred, gt, mask):
pos_inds = gt.eq(1).float() * mask
neg_inds = gt.lt(1).float() * mask
neg_weights = torch.pow(1 - gt, 4)
loss = 0
pos_loss = torch.log(pred) * torch.pow(1 - pred, 2) * pos_inds
neg_loss = torch.log(1 - pred) * torch.pow(pred, 2) * \
neg_weights * neg_inds
num_pos = pos_inds.float().sum()
pos_loss = pos_loss.sum()
neg_loss = neg_loss.sum()
if num_pos == 0:
loss = loss - neg_loss
else:
loss = loss - (pos_loss + neg_loss) / num_pos
return loss
先说一下,这里面的mask是根据特定任务中加上的一个小功能,就是在该任务中,一张图片中有一部分是不需要计算loss的,所以先用过mask把那个部分过滤掉。这里直接忽视mask就好了。
从neg_weights = torch.pow(1 - gt, 4)
可以得知 β = 4 \beta=4 β=4,从下面的代码中也不难推出, α = 2 \alpha=2 α=2,剩下的内容就都一样了。
把每一个pixel的损失都加起来,除以目标物体的数量即可。