运筹系列32:APMonitor/Gekko套装

1. 介绍

APM是Advanced Process Monitor,可用于混合整数规划(LP, QP, NLP, MILP, MINLP)和微分方程求解。而GEKKO是在此之上的升级版本,使用python语言。安装很简单pip install gekko即可.
快速入门的例子看这里:https://gekko.readthedocs.io/en/latest/examples.html
这里是教程,真是太贴心了:
https://apmonitor.com/wiki/index.php/Main/GekkoPythonOptimization
GEKKO可选的求解器有1: APOPT, 2: BPOPT, 3: IPOPT。此外,也可以调用MINOS、SNOPT等。
IPOPT一般用于问题自由度(自由度=变量个数-约束个数)很大、初始估计较好的情况;BPOPT则是在系统生物应用中使用;APOPT用于问题自由度小于2000的情形。如果有整数约束,则只能使用APOPT。

这里可以在线尝试:http://apmonitor.com/。
运筹系列32:APMonitor/Gekko套装_第1张图片

2. 建模

Gekko常见变量:Constants, Parameters, Variables and Intermediates,顾名思义是常数、参数、变量和显式变量。
添加约束条件:m.Equations(eqs)
添加目标函数:m.Obj(obj)
connections算是官方的化简工具,两个变量如果有直接的关系,则只显示第一个。
dt()函数表示微分。
time参数可以将所有的约束在每个时间点上都建立起来。
options参数可以设置全局参数。
Array可以方便的创建多维数组,例如x = m.Array(m.Var,(n,p))
solve(disp=True, debug=False)用于求解
max/min有各种编号,具体看文档。
sos1:specical ordered set。

下面是官方的例子:

from gekko import GEKKO

#Initialize Model
m = GEKKO()

#define parameter
eq = m.Param(value=40)

#initialize variables
x1,x2,x3,x4 = [m.Var(lb=1, ub=5) for i in range(4)]

#initial values
x1.value = 1
x2.value = 5
x3.value = 5
x4.value = 1

#Equations
m.Equation(x1*x2*x3*x4>=25)
m.Equation(x1**2+x2**2+x3**2+x4**2==eq)

#Objective
m.Obj(x1*x4*(x1+x2+x3)+x3)

#Set global options
m.options.IMODE = 3 #steady state optimization

#Solve simulation
m.solve()

#Results
print('')
print('Results')
print('x1: ' + str(x1.value))
print('x2: ' + str(x2.value))
print('x3: ' + str(x3.value))
print('x4: ' + str(x4.value))

返回结果如下:

 ----------------------------------------------------------------
 APMonitor, Version 0.9.2
 APMonitor Optimization Suite
 ----------------------------------------------------------------
 
 
 --------- APM Model Size ------------
 Each time step contains
   Objects      :            0
   Constants    :            0
   Variables    :            6
   Intermediates:            0
   Connections  :            0
   Equations    :            3
   Residuals    :            3
 
 Number of state variables:              5
 Number of total equations: -            2
 Number of slack variables: -            1
 ---------------------------------------
 Degrees of freedom       :              2
 
 solver            3  not supported
 using default solver: APOPT
 ----------------------------------------------
 Steady State Optimization with APOPT Solver
 ----------------------------------------------
 
 Iter    Objective  Convergence
    0  1.67676E+01  1.87500E-01
    1  2.04736E+01  4.88281E-02
    2  1.75530E+01  2.17630E-02
    3  1.70459E+01  9.65302E-03
    4  1.70140E+01  2.04419E-04
    5  1.70140E+01  4.22153E-08
    6  1.70140E+01  6.48259E-13
    7  1.70140E+01  6.48259E-13
 Successful solution
 
 ---------------------------------------------------
 Solver         :  IPOPT (v3.12)
 Solution time  :    2.0000000018626451E-002 sec
 Objective      :    17.014017289155863     
 Successful solution
 ---------------------------------------------------
 


Results
x1: [1.0]
x2: [4.742999637]
x3: [3.8211499845]
x4: [1.3794082931]

3. 深度学习模块

brain模块用于人工神经网络(ANN)的优化求解。gekko优化的原理与常见的梯度下降法不太一样,使用于中等规模的模型参数优化。这里直接简单给一个例子,蓝色的是数据点,红色曲线是神经网络的预测结果。

from gekko import brain
import numpy as np
import matplotlib.pyplot as plt
b = brain.Brain(remote=False)
b.input_layer(1)
b.layer(linear=2)
b.layer(tanh=2)
b.layer(linear=2)
b.output_layer(1)
x = np.linspace(0,2*np.pi)
y = np.sin(x)
b.learn(x,y)
xp = np.linspace(-2*np.pi,4*np.pi,100)
yp = b.think(xp)
plt.figure()
plt.plot(x,y,'bo')
plt.plot(xp,yp[0],'r-')
plt.show()

结果如下:

 APMonitor, Version 0.9.2
 APMonitor Optimization Suite
 ----------------------------------------------------------------
 
 
 --------- APM Model Size ------------
 Each time step contains
   Objects      :            0
   Constants    :            0
   Variables    :           21
   Intermediates:           14
   Connections  :            0
   Equations    :           15
   Residuals    :            1
 
 Number of state variables:             69
 Number of total equations: -           50
 Number of slack variables: -            0
 ---------------------------------------
 Degrees of freedom       :             19
 
 solver            3  not supported
 using default solver: APOPT
 ----------------------------------------------
 Model Parameter Estimation with APOPT Solver
 ----------------------------------------------
 
 Iter    Objective  Convergence
    0  2.32734E+02  9.62187E-01
    1  1.93339E+02  5.00197E-01
    2  1.11518E+02  1.09380E+00
    3  1.11104E+03  9.86073E-01
    4  3.77756E+02  1.36852E-01
    5  8.80346E+02  1.98341E-01
    6  4.10029E+02  1.27699E-01
    7  3.47998E+02  7.34888E-03
    8  1.49302E+02  4.53653E-02
    9  1.93712E+02  8.73271E-02
 
 Iter    Objective  Convergence
   10  5.74918E+01  3.12551E-01
   11  4.84043E+01  5.68927E-02
   12  4.39362E+01  3.54965E-02
   13  4.32555E+01  1.55739E-02
   14  4.30514E+01  1.66817E-03
   15  4.24926E+01  5.04354E-04
   16  4.19261E+01  3.60617E-02
   17  4.17156E+01  1.53822E-03
   18  4.18934E+01  2.22466E-02
   19  4.17898E+01  2.25828E-02
 
 Iter    Objective  Convergence
   20  4.17632E+01  2.25767E-03
   21  4.17563E+01  1.06715E-03
   22  4.17559E+01  7.26557E-05
   23  4.17556E+01  8.69901E-04
   24  4.17556E+01  5.07237E-04
   25  4.17556E+01  3.89240E-05
   26  4.17556E+01  3.89240E-05
 Successful solution
 
 ---------------------------------------------------
 Solver         :  IPOPT (v3.12)
 Solution time  :    7.6999999815598130E-002 sec
 Objective      :    41.755580638466895     
 Successful solution
 ---------------------------------------------------

运筹系列32:APMonitor/Gekko套装_第2张图片

你可能感兴趣的:(python,运筹学)