【CUDA】cudnn+CUDA10.0+VS2017+win10详细配置(永久配置)

首先去官网下载cudnn+CUDA10.0

  • 设置环境变量:
  • 使用cmd到路径打开例子
  • VS2017配置:

安装过程(按照默认安装即可)

【CUDA】cudnn+CUDA10.0+VS2017+win10详细配置(永久配置)_第1张图片
【CUDA】cudnn+CUDA10.0+VS2017+win10详细配置(永久配置)_第2张图片

设置环境变量:

安装结束后,我们在计算机上点右键,打开属性->高级系统设置->环境变量,可以看到系统中多了CUDA_PATH和CUDA_PATH_V9_0两个环境变量。

【CUDA】cudnn+CUDA10.0+VS2017+win10详细配置(永久配置)_第3张图片

我们还需要在环境变量中添加如下几个变量:

CUDA_SDK_PATH = C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.0 
CUDA_LIB_PATH = %CUDA_PATH%\lib\x64 
CUDA_BIN_PATH = %CUDA_PATH%\bin 
CUDA_SDK_BIN_PATH = %CUDA_SDK_PATH%\bin\win64 
CUDA_SDK_LIB_PATH = %CUDA_SDK_PATH%\common\lib\x64 

使用cmd到路径打开例子

【CUDA】cudnn+CUDA10.0+VS2017+win10详细配置(永久配置)_第4张图片
下一步是监测cuda安装成功与否:

在cuda安装文件夹中有deviceQuery.exe 和 bandwidthTest.exe两个程序。首先启动cmd DOS命令窗口,默认进来的是c:\users\Admistrator>路径,输入 cd … 两次,来到c:目录下输入dir 找到安装的cuda文件夹。
【CUDA】cudnn+CUDA10.0+VS2017+win10详细配置(永久配置)_第5张图片

分别输入deviceQuery.exe 和 bandwidthTest.exe,运行结果如图所示。Rsult=PASS则说明通过,反之,Rsult=Fail 则需要重新安装。

VS2017配置:

1.打开vs2017,我们可以观察到,在VS2017模板一栏下方出现了“NVIDIA/CUDA 10.0”。创建一个空win32程序,即cuda_test项目。
【CUDA】cudnn+CUDA10.0+VS2017+win10详细配置(永久配置)_第6张图片
2,源文件>> 添加>>新建项(cuda_test);设置成release,x64(其他方式类似)
【CUDA】cudnn+CUDA10.0+VS2017+win10详细配置(永久配置)_第7张图片
在这里插入图片描述
视图>>其他窗口>>属性管理器>> Release | 64 >> Microsoft.Cpp.x64.user

a) 通用属性>>VC++ 目录>>包含目录:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\include
b)通用属性>>VC++ 目录>>库目录:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\lib\x64
c)链接器–>输入–>附加依赖项

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\lib\x64
里面所有以.lib结束的文件都添加
可以cmd进入以上路径 用DIR *.lib /B > 1.txt ,复制粘贴即可。

// CUDA runtime 库 + CUBLAS 库   
#include "cuda_runtime.h"  
#include "cublas_v2.h"  

#include <time.h>  
#include <iostream>  

using namespace std;  

// 定义测试矩阵的维度  
int const M = 5;  
int const N = 10;  

int main()   
{     
    // 定义状态变量  
    cublasStatus_t status;  

    // 在 内存 中为将要计算的矩阵开辟空间  
    float *h_A = (float*)malloc (N*M*sizeof(float));  
    float *h_B = (float*)malloc (N*M*sizeof(float));  

    // 在 内存 中为将要存放运算结果的矩阵开辟空间  
    float *h_C = (float*)malloc (M*M*sizeof(float));  

    // 为待运算矩阵的元素赋予 0-10 范围内的随机数  
    for (int i=0; i<N*M; i++) {  
        h_A[i] = (float)(rand()%10+1);  
        h_B[i] = (float)(rand()%10+1);  

    }  

    // 打印待测试的矩阵  
    cout << "矩阵 A :" << endl;  
    for (int i=0; i<N*M; i++){  
        cout << h_A[i] << " ";  
        if ((i+1)%N == 0) cout << endl;  
    }  
    cout << endl;  
    cout << "矩阵 B :" << endl;  
    for (int i=0; i<N*M; i++){  
        cout << h_B[i] << " ";  
        if ((i+1)%M == 0) cout << endl;  
    }  
    cout << endl;  

    /* 
    ** GPU 计算矩阵相乘 
    */  

    // 创建并初始化 CUBLAS 库对象  
    cublasHandle_t handle;  
    status = cublasCreate(&handle);  

    if (status != CUBLAS_STATUS_SUCCESS)  
    {  
        if (status == CUBLAS_STATUS_NOT_INITIALIZED) {  
            cout << "CUBLAS 对象实例化出错" << endl;  
        }  
        getchar ();  
        return EXIT_FAILURE;  
    }  

    float *d_A, *d_B, *d_C;  
    // 在 显存 中为将要计算的矩阵开辟空间  
    cudaMalloc (  
        (void**)&d_A,    // 指向开辟的空间的指针  
        N*M * sizeof(float)    // 需要开辟空间的字节数  
    );  
    cudaMalloc (  
        (void**)&d_B,      
        N*M * sizeof(float)      
    );  

    // 在 显存 中为将要存放运算结果的矩阵开辟空间  
    cudaMalloc (  
        (void**)&d_C,  
        M*M * sizeof(float)      
    );  

    // 将矩阵数据传递进 显存 中已经开辟好了的空间  
    cublasSetVector (  
        N*M,    // 要存入显存的元素个数  
        sizeof(float),    // 每个元素大小  
        h_A,    // 主机端起始地址  
        1,    // 连续元素之间的存储间隔  
        d_A,    // GPU 端起始地址  
        1    // 连续元素之间的存储间隔  
    );  
    cublasSetVector (  
        N*M,   
        sizeof(float),   
        h_B,   
        1,   
        d_B,   
        1  
    );  

    // 同步函数  
    cudaDeviceSynchronize();  

    // 传递进矩阵相乘函数中的参数,具体含义请参考函数手册。  
    float a=1; float b=0;  
    // 矩阵相乘。该函数必然将数组解析成列优先数组  
    cublasSgemm (  
        handle,    // blas 库对象   
        CUBLAS_OP_T,    // 矩阵 A 属性参数  
        CUBLAS_OP_T,    // 矩阵 B 属性参数  
        M,    // A, C 的行数   
        M,    // B, C 的列数  
        N,    // A 的列数和 B 的行数  
        &a,    // 运算式的 α 值  
        d_A,    // A 在显存中的地址  
        N,    // lda  
        d_B,    // B 在显存中的地址  
        M,    // ldb  
        &b,    // 运算式的 β 值  
        d_C,    // C 在显存中的地址(结果矩阵)  
        M    // ldc  
    );  

    // 同步函数  
    cudaDeviceSynchronize();  

    // 从 显存 中取出运算结果至 内存中去  
    cublasGetVector (  
        M*M,    //  要取出元素的个数  
        sizeof(float),    // 每个元素大小  
        d_C,    // GPU 端起始地址  
        1,    // 连续元素之间的存储间隔  
        h_C,    // 主机端起始地址  
        1    // 连续元素之间的存储间隔  
    );  

    // 打印运算结果  
    cout << "计算结果的转置 ( (A*B)的转置 ):" << endl;  

    for (int i=0;i<M*M; i++){  
            cout << h_C[i] << " ";  
            if ((i+1)%M == 0) cout << endl;  
    }  

    // 清理掉使用过的内存  
    free (h_A);  
    free (h_B);  
    free (h_C);  
    cudaFree (d_A);  
    cudaFree (d_B);  
    cudaFree (d_C);  

    // 释放 CUBLAS 库对象  
    cublasDestroy (handle);  

    getchar();  

    return 0;  
}  

运行,出现以下结果即为成功

【CUDA】cudnn+CUDA10.0+VS2017+win10详细配置(永久配置)_第8张图片

下载对应版本的cudnn,将bin、include、lib三个文件夹覆盖粘贴至CUDA安装目录即可

你可能感兴趣的:(配置)