我这里我们会使用torchvision包,它是服务于PyTorch深度学习框架的,主要用来构建计算机视觉模型。
-torchvision主要由以下几部分构成:
torchvision.datasets: 一些加载数据的函数及常用的数据集接口;
torchvision.models: 包含常用的模型结构(含预训练模型),例如AlexNet、VGG、ResNet等;
torchvision.transforms: 常用的图片变换,例如裁剪、旋转等;
torchvision.utils: 其他的一些有用的方法。
# import needed package
%matplotlib inline
from IPython import display
import matplotlib.pyplot as plt
import torch
import torchvision
import torchvision.transforms as transforms
import time
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
print(torch.__version__)
print(torchvision.__version__)
mnist_train = torchvision.datasets.FashionMNIST(root='/home/kesci/input/FashionMNIST2065', train=True, download=True, transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root='/home/kesci/input/FashionMNIST2065', train=False, download=True, transform=transforms.ToTensor())
class torchvision.datasets.FashionMNIST(root, train=True, transform=None, target_transform=None, download=False)
root(string)– 数据集的根目录,其中存放processed/training.pt和processed/test.pt文件。
train(bool, 可选)– 如果设置为True,从training.pt创建数据集,否则从test.pt创建。
download(bool, 可选)– 如果设置为True,从互联网下载数据并放到root文件夹下。如果root目录下已经存在数据,不会再次下载。
transform(可被调用 , 可选)– 一种函数或变换,输入PIL图片,返回变换之后的数据。如:transforms.RandomCrop。
target_transform(可被调用 , 可选)– 一种函数或变换,输入目标,进行变换。
# show result
print(type(mnist_train))
print(len(mnist_train), len(mnist_test))
60000 10000
# 我们可以通过下标来访问任意一个样本
feature, label = mnist_train[0]
print(feature.shape, label) # Channel x Height x Width
如果不做变换输入的数据是图像,我们可以看一下图片的类型参数:
mnist_PIL = torchvision.datasets.FashionMNIST(root='/home/kesci/input/FashionMNIST2065', train=True, download=True)
PIL_feature, label = mnist_PIL[0]
print(PIL_feature)
# 本函数已保存在d2lzh包中方便以后使用
#作用:将标签转化为文本的形式
#返回的是标签所对应的文本信息(文本信息是存储在text_lables这个列表中的)
def get_fashion_mnist_labels(labels):
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
return [text_labels[int(i)] for i in labels]
#做一个数据集的展示
def show_fashion_mnist(images, labels):
d2l.use_svg_display()
# 这里的_表示我们忽略(不使用)的变量
_, figs = plt.subplots(1, len(images), figsize=(12, 12))
for f, img, lbl in zip(figs, images, labels):
f.imshow(img.view((28, 28)).numpy())
f.set_title(lbl)
f.axes.get_xaxis().set_visible(False)
f.axes.get_yaxis().set_visible(False)
plt.show()
X, y = [], []
for i in range(10):
X.append(mnist_train[i][0]) # 将第i个feature加到X中
y.append(mnist_train[i][1]) # 将第i个label加到y中
show_fashion_mnist(X, get_fashion_mnist_labels(y))
# 读取数据
batch_size = 256 #批量大小
num_workers = 4 #工作线程
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
看看取数据花了多少时间
start = time.time()
for X, y in train_iter:
continue
print('%.2f sec' % (time.time() - start))
import torch
import torchvision
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
print(torch.__version__)
print(torchvision.__version__)
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
#是对dataloader的一个封装
num_inputs = 784 #输入特征是784,即X有28*28个元素
print(28*28)
num_outputs = 10 #输出是十种类型
#接下来定义权重和偏差
W = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_outputs)), dtype=torch.float)
b = torch.zeros(num_outputs, dtype=torch.float)
#为了方便后续的反向传播,这里赋予两个参数梯度
W.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)
X = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(X.sum(dim=0, keepdim=True)) # dim为0,按照相同的列求和,并在结果中保留列特征
print(X.sum(dim=1, keepdim=True)) # dim为1,按照相同的行求和,并在结果中保留行特征
print(X.sum(dim=0, keepdim=False)) # dim为0,按照相同的列求和,不在结果中保留列特征
print(X.sum(dim=1, keepdim=False)) # dim为1,按照相同的行求和,不在结果中保留行特征
def softmax(X):
X_exp = X.exp() #指数操作,作分子
partition = X_exp.sum(dim=1, keepdim=True) #指数操作后求和,作分母
# print("X size is ", X_exp.size())
# print("partition size is ", partition, partition.size())
return X_exp / partition # 这里应用了广播机制
注释掉的两句显示X和partition的形状区别,利用了广播机制。
结果如下图
X = torch.rand((2, 5))
X_prob = softmax(X)
print(X_prob, '\n', X_prob.sum(dim=1))
※下面的参数x是输入特征,所以是一个行向量,通过view()函数将其变形成列向量,方便与权重w相乘,再与b相加,传入softmax函数中,得到输出y_hat
def net(X):
return softmax(torch.mm(X.view((-1, num_inputs)), W) + b)
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y = torch.LongTensor([0, 2])
y_hat.gather(1, y.view(-1, 1))
def cross_entropy(y_hat, y):
return - torch.log(y_hat.gather(1, y.view(-1, 1)))
我们模型训练完了进行模型预测的时候,会用到我们这里定义的准确率。
def accuracy(y_hat, y):
return (y_hat.argmax(dim=1) == y).float().mean().item()
#"y_hat.argmax(dim=1)"按行取y_hat中的最大值与真实标签y的值作比较,如果相同的话为1,不同为0;再相加起来求平均值
print(accuracy(y_hat, y))
# 本函数已保存在d2lzh_pytorch包中方便以后使用。该函数将被逐步改进:它的完整实现将在“图像增广”一节中描述
def evaluate_accuracy(data_iter, net):
acc_sum, n = 0.0, 0
for X, y in data_iter:
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
n += y.shape[0]
return acc_sum / n
print(evaluate_accuracy(test_iter, net))
num_epochs, lr = 5, 0.1
# 本函数已保存在d2lzh_pytorch包中方便以后使用
def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
params=None, lr=None, optimizer=None):
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y).sum()
# 梯度清零
if optimizer is not None:
optimizer.zero_grad()
elif params is not None and params[0].grad is not None:
for param in params:
param.grad.data.zero_()
l.backward()
if optimizer is None:
d2l.sgd(params, lr, batch_size)
else:
optimizer.step()
train_l_sum += l.item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
n += y.shape[0]
test_acc = evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
% (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, batch_size, [W, b], lr)
现在我们的模型训练完了,可以进行一下预测,我们的这个模型训练的到底准确不准确。 现在就可以演示如何对图像进行分类了。给定一系列图像(第三行图像输出),我们比较一下它们的真实标签(第一行文本输出)和模型预测结果(第二行文本输出)。
X, y = iter(test_iter).next()
true_labels = d2l.get_fashion_mnist_labels(y.numpy())
pred_labels = d2l.get_fashion_mnist_labels(net(X).argmax(dim=1).numpy())
titles = [true + '\n' + pred for true, pred in zip(true_labels, pred_labels)]
d2l.show_fashion_mnist(X[0:9], titles[0:9])
# 加载各种包或者模块
import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
print(torch.__version__)
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs = 784
num_outputs = 10
class LinearNet(nn.Module):
def __init__(self, num_inputs, num_outputs):
super(LinearNet, self).__init__()
#初始化28*28输入,10个输出的线性网络
self.linear = nn.Linear(num_inputs, num_outputs)
def forward(self, x): # x 的形状: (batch, 1, 28, 28)
#给y一个输出的"格式"
y = self.linear(x.view(x.shape[0], -1))
return y
# net = LinearNet(num_inputs, num_outputs)
class FlattenLayer(nn.Module):
def __init__(self):
super(FlattenLayer, self).__init__()
def forward(self, x): # x 的形状: (batch, *, *, ...)
#将28*28的输出转换成784的形式
return x.view(x.shape[0], -1)
#用nn.Sequential()来初始化网络
from collections import OrderedDict
net = nn.Sequential(
# FlattenLayer(),
# LinearNet(num_inputs, num_outputs)
OrderedDict([
('flatten', FlattenLayer()), #变换层
('linear', nn.Linear(num_inputs, num_outputs))])
#线性层,即softmax层
# 或者写成我们自己定义的 LinearNet(num_inputs, num_outputs) 也可以
)
用torch的init模块进行权重w,偏差b的初始化
init.normal_(net.linear.weight, mean=0, std=0.01)
init.constant_(net.linear.bias, val=0)
Parameter containing:
tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], requires_grad=True)
交叉熵损失函数原型
loss = nn.CrossEntropyLoss() # 下面是他的函数原型
# class torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, reduce=None, reduction='mean')
一样的随机梯度下降函数,传入的是该网络的参数和超参学习率
optimizer = torch.optim.SGD(net.parameters(), lr=0.1) # 下面是函数原型
# class torch.optim.SGD(params, lr=, momentum=0, dampening=0, weight_decay=0, nesterov=False)
num_epochs = 5
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)
X = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(X.sum(dim=0, keepdim=True)) # dim为0,按照相同的列求和,并在结果中保留列特征
print(X.sum(dim=1, keepdim=True)) # dim为1,按照相同的行求和,并在结果中保留行特征
print(X.sum(dim=0, keepdim=False)) # dim为0,按照相同的列求和,不在结果中保留列特征
print(X.sum(dim=1, keepdim=False)) # dim为1,按照相同的行求和,不在结果中保留行特征
输出:
tensor([[5, 7, 9]])
tensor([[ 6],
[15]])
tensor([5, 7, 9])
tensor([ 6, 15])
错题:Softmax与分类模型
答:softmax化简过程中,会减去最大项,避免因运算过大导致上溢出或下溢出,解决办法可参考笔记https://www.cnblogs.com/guohaoblog/p/12306118.html
拓展:试着比较SVM和softmax的区别和联系。