Spark-Sql源码解析之五 Spark Planner:optimized logical plan –> spark plan

前面描述的主要是逻辑计划,即sql如何被解析成logicalplan,以及logicalplan如何被analyzer以及optimzer,接下来主要介绍逻辑计划如何被翻译成物理计划,即SparkPlan。

lazy val sparkPlan: SparkPlan = {
  SparkPlan.currentContext.set(self)
  planner.plan(optimizedPlan).next()
}

当optimizedPlan经过planner转化之后就变为sparkPlan了。因此首先看下planner是什么?

protected[sql] val planner = new SparkPlanner
//包含不同策略的策略来优化物理执行计划
protected[sql] class SparkPlanner extends SparkStrategies {
  val sparkContext: SparkContext = self.sparkContext
  val sqlContext: SQLContext = self
  def codegenEnabled: Boolean = self.conf.codegenEnabled
  def unsafeEnabled: Boolean = self.conf.unsafeEnabled
  def numPartitions: Int = self.conf.numShufflePartitions
  //把LogicPlan转换成实际的操作,具体操作类在org.apache.spark.sql.execution包下面
  def strategies: Seq[Strategy] =
    experimental.extraStrategies ++ (
    DataSourceStrategy ::
    DDLStrategy ::
    //把limit转换成TakeOrdered操作
    TakeOrdered ::
    //转换聚合操作
    HashAggregation ::
    //left semi join只显示连接条件成立的时候连接左边的表的信息
    // 比如select * from table1 left semi join table2 on(table1.student_no=table2.student_no);
    // 它只显示table1中student_no在表二当中的信息,它可以用来替换exist语句
    LeftSemiJoin ::
      //等值连接操作,有些优化的内容,如果表的大小小于spark.sql.autoBroadcastJoinThreshold设置的字节
      //就自动转换为BroadcastHashJoin,即把表缓存,类似hive的map join(顺序是先判断右表再判断右表)。
      //这个参数的默认值是10000
      //另外做内连接的时候还会判断左表右表的大小,shuffle取数据大表不动,从小表拉取数据过来计算
    HashJoin ::
    //在内存里面执行select语句进行过滤,会做缓存
    InMemoryScans ::
      //和parquet相关的操作
      ParquetOperations ::
      //基本的操作
      BasicOperators ::
      //没有条件的连接或者内连接做笛卡尔积
      CartesianProduct ::
      //把NestedLoop连接进行广播连接
      BroadcastNestedLoopJoin :: Nil)
  ……
}

通过上述不同的策略来解析LogicalPlan。比分说sql语句:

String sql = " select SUM(id) from test group by dev_chnid";

其对应的optimizedPlan为:

Aggregate [dev_chnid#0], [SUM(id#17L) AS c0#43L]
 Project [dev_chnid#0,id#17L]
Relation[dev_chnid#0,car_img_count#1,save_flag#2,dc_cleanflag#3,pic_id#4,car_img_plate_top#5L,car_img_plate_left#6L,car_img_plate_bottom#7L,car_img_plate_right#8L,car_brand#9L,issafetybelt#10,isvisor#11,bind_stat#12,car_num_pic#13,combined_pic_url#14,verify_memo#15,rec_stat_tmp#16,id#17L,dev_id#18,dev_chnnum#19L,dev_name#20,dev_chnname#21,car_num#22,car_numtype#23,car_numcolor#24,car_speed#25,car_type#26,car_color#27,car_length#28L,car_direct#29,car_way_code#30,cap_time#31L,cap_date#32L,inf_note#33,max_speed#34,min_speed#35,car_img_url#36,car_img1_url#37,car_img2_url#38,car_img3_url#39,car_img4_url#40,car_img5_url#41,rec_stat#42] org.apache.spark.sql.parquet.ParquetRelation2@2d83a7f4

则转化为的sparkPlan如下:

Aggregate false, [dev_chnid#0], [CombineSum(PartialSum#45L) AS c0#43L]
 Aggregate true, [dev_chnid#0], [dev_chnid#0,SUM(id#17L) AS PartialSum#45L]
  PhysicalRDD [dev_chnid#0,id#17L], MapPartitionsRDD[1] at

其转化过程如下:

一):首先被HashAggregation解析

object HashAggregation extends Strategy {
    def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {
      // Aggregations that can be performed in two phases, before and after the shuffle.
      // Cases where all aggregates can be codegened.
      case PartialAggregation(
             namedGroupingAttributes,
             rewrittenAggregateExpressions,
             groupingExpressions,
             partialComputation,
             child)
             if canBeCodeGened(//开启CodeGened
                  allAggregates(partialComputation) ++
                  allAggregates(rewrittenAggregateExpressions)) &&
               codegenEnabled =>
          execution.GeneratedAggregate(
            partial = false,
            namedGroupingAttributes,
            rewrittenAggregateExpressions,
            unsafeEnabled,
            execution.GeneratedAggregate(
              partial = true,
              groupingExpressions,
              partialComputation,
              unsafeEnabled,
              planLater(child))) :: Nil

      // Cases where some aggregate can not be codegened
      case PartialAggregation(
             namedGroupingAttributes,
             rewrittenAggregateExpressions,
             groupingExpressions,
             partialComputation,
             child) =>//关闭CodeGened,测试的时候spark.sql.codegen为false

        execution.Aggregate(
            partial = false,
            namedGroupingAttributes,
            rewrittenAggregateExpressions,
          execution.Aggregate(
            partial = true,
            groupingExpressions,
            partialComputation,
            planLater(child))) :: Nil))
      case _ => Nil
    }

然后呢?有没有注意到planLater(child)这个函数,它本质上是继续解析其子节点,即

Project [dev_chnid#0,id#17L]
Relation[dev_chnid#0,car_img_count#1,save_flag#2,dc_cleanflag#3,pic_id#4,car_img_plate_top#5L,car_img_plate_left#6L,car_img_plate_bottom#7L,car_img_plate_right#8L,car_brand#9L,issafetybelt#10,isvisor#11,bind_stat#12,car_num_pic#13,combined_pic_url#14,verify_memo#15,rec_stat_tmp#16,id#17L,dev_id#18,dev_chnnum#19L,dev_name#20,dev_chnname#21,car_num#22,car_numtype#23,car_numcolor#24,car_speed#25,car_type#26,car_color#27,car_length#28L,car_direct#29,car_way_code#30,cap_time#31L,cap_date#32L,inf_note#33,max_speed#34,min_speed#35,car_img_url#36,car_img1_url#37,car_img2_url#38,car_img3_url#39,car_img4_url#40,car_img5_url#41,rec_stat#42] org.apache.spark.sql.parquet.ParquetRelation2@2d83a7f4
abstract class QueryPlanner[PhysicalPlan <: TreeNode[PhysicalPlan]] {
  /** A list of execution strategies that can be used by the planner */
  def strategies: Seq[GenericStrategy[PhysicalPlan]]
  protected def planLater(plan: LogicalPlan) = this.plan(plan).next()//继续解析
  def plan(plan: LogicalPlan): Iterator[PhysicalPlan] = {
    // Obviously a lot to do here still...
    val iter = strategies.view.flatMap(_(plan)).toIterator
    assert(iter.hasNext, s"No plan for $plan")
    iter
  }
}

二):其次继续解析其子节点

private[sql] object DataSourceStrategy extends Strategy with Logging {
  def apply(plan: LogicalPlan): Seq[execution.SparkPlan] = plan match {
……
    // Scanning partitioned HadoopFsRelation
    case PhysicalOperation(projectList, filters, l @ LogicalRelation(t: HadoopFsRelation))
        if t.partitionSpec.partitionColumns.nonEmpty =>
      val selectedPartitions = prunePartitions(filters, t.partitionSpec).toArray
      logInfo {
        val total = t.partitionSpec.partitions.length
        val selected = selectedPartitions.length
        val percentPruned = (1 - total.toDouble / selected.toDouble) * 100
        s"Selected $selected partitions out of $total, pruned $percentPruned% partitions."
      }
      // Only pushes down predicates that do not reference partition columns.
      val pushedFilters = {
        val partitionColumnNames = t.partitionSpec.partitionColumns.map(_.name).toSet
        filters.filter { f =>
          val referencedColumnNames = f.references.map(_.name).toSet
          referencedColumnNames.intersect(partitionColumnNames).isEmpty
        }
      }
      buildPartitionedTableScan(
        l,
        projectList,
        pushedFilters,
        t.partitionSpec.partitionColumns,
        selectedPartitions) :: Nil
    // Scanning non-partitioned HadoopFsRelation
//加载Parquet文件,走这个分支
    case PhysicalOperation(projectList, filters, l @ LogicalRelation(t: HadoopFsRelation)) =>
      // See buildPartitionedTableScan for the reason that we need to create a shard
      // broadcast HadoopConf.
      val sharedHadoopConf = SparkHadoopUtil.get.conf
      val confBroadcast =
        t.sqlContext.sparkContext.broadcast(new SerializableWritable(sharedHadoopConf))
      pruneFilterProject(//返回PhysicalRDD
        l,
        projectList,
        filters,
        (a, f) => t.buildScan(a, f, t.paths, confBroadcast)) :: Nil
      ……
  }
}

因此select SUM(id) from test group by dev_chnid最终被翻译成:

Aggregate false, [dev_chnid#0], [CombineSum(PartialSum#45L) AS c0#43L]
 Aggregate true, [dev_chnid#0], [dev_chnid#0,SUM(id#17L) AS PartialSum#45L]
  PhysicalRDD [dev_chnid#0,id#17L], MapPartitionsRDD[1]

至于其他策略目前还没有深入研究,上面的注释都是网上摘来的,待以后研究,这里只列举了一个聚合函数的例子,其它类似。

你可能感兴趣的:(Spark,Spark,SQL,1.4.1,详解)