java中最小生成树的实现

最小生成树的实现:
import java.util.ArrayList;
import java.util.List;

public class ShortestTree {
	
	int[][]  dataMap={
			{-1,-1,10,-1,30,100},
			{-1,-1,5,-1,-1,-1},
			{-1,-1,-1,50,-1,-1},
			{-1,-1,-1,-1,-1,10},
			{-1,-1,-1,20,-1,60},
			{-1,-1,-1,-1,-1,-1},

	};
	//找寻最小生成树
	void findShortestTree(int start,int end,int n){
		int[] closedge = new int[n];//记录与当前树与可达的未被访问之间的权值
		boolean[] arrivaled = new boolean[n];//记录节点是否被访问
		List list = new ArrayList();//记录最小生成树中依次添加的节点
		int tempMinNode;
		arrivaled[start] = true;//标记起始节点已被访问
		list.add(start);//把起始节点加入最小生成树列表中
		for (int i = 0; i < n; i++) {
			if(!arrivaled[i])
				closedge[i] = dataMap[start][i];
		}
		
		for (int i = 0; i < n; i++) {
			tempMinNode = findMinNode(closedge, arrivaled);
			System.out.println(tempMinNode);
			if(-2 == tempMinNode || -1==closedge[tempMinNode]){
				break;
			}else{
				arrivaled[tempMinNode] = true;
				list.add(tempMinNode);
				for (int j = 0; j 0){
						if(closedge[j]==-1 || closedge[j]>dataMap[tempMinNode][j]){
							closedge[j] = dataMap[tempMinNode][j];
						}
					}
				}
			}
		}
	
		System.out.println(list);
	}
	//找寻与当前生成树连接中具有最小权值的连接节点
	int findMinNode(int[] closedge,boolean[] arrived){
		int size = closedge.length,min=-2;
		for (int i = 0; i < size; i++) {
			
			if(!arrived[i]){
				if(min==-2 && closedge[i]>0)//覆盖初始节点
					min=i;
				if(-2!=min && closedge[min]>0){
					if(closedge[i]>0 && closedge[i]

你可能感兴趣的:(java,数据结构)