tvm学习笔记(一):编译安装

1、编译需要打开的选项:

set(USE_SORT ON)

参考资料:

https://discuss.tvm.ai/t/solved-cant-run-tutorials-ssd-model-on-my-own-cpu/2005

2、编译gpu模型:

编译时,打开编译cuda选项:tvm_option(USE_CUDA "Build with CUDA" ON)

在jetson nano上编译GPU版本时,需要将cuda加入到环境变量里面去:

export CUBA_HOME=/usr/local/cuda-10.0:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:$LD_LIBRARY_PATH
export PATH=/usr/local/cuda-10.0/bin:$PATH

target = tvm.target.create("llvm -mcpu=haswell")替换为:target = "cuda"

参考资料:

https://github.com/deepinsight/insightface/issues/578

https://blog.csdn.net/beckhans/article/details/89138876

3、Andorid编译

cp make/config.mk 

APP_ABI = armeabi-v7a

./make_standalone_toolchain.py –arch arm --api 23 --install-dir /opt/android-toolchain-armv7 -mfloat-abi=soft

参考资料:

https://discuss.tvm.ai/t/solved-compilation-error-clang70-error-linker-command-failed/2040/7

4、LLVM 在windows上编译

1)下载LLVM源码

首先下载LLVM源码,下载地址为:

https://github.com/MirrorYuChen/llvm-project/tree/release/6.x

这里对应LLVM版本为6.x,后面需要用LLD工具,这个源码里面就自带有,然后在LLVM文件夹下面新建一个build文件夹,并在此文件夹路径下打开cmd窗口,输入如下命令:

cmake -G "Visual Studio 15 2017 Win64" .. -Thost=x64 -DLLVM_ENABLE_PROJECTS=lld

打开生成的llvm.sln项目,切换到release x64模式编译,大约需要1小时时间编译完成,并运行install。

Jetson nano:

>> git clone https://github.com/llvm/llvm-project llvm-project
>> cd llvm-project
>> mkdir build
>> cd build
>> cmake -DCMAKE_BUILD_TYPE=Release -DLLVM_ENABLE_PROJECTS=lld -DCMAKE_INSTALL_PREFIX=/usr/local ../../llvm-project/llvm
>> make -j3 && make install

2)下载tvm源码

git clone --recursive https://github.com/dmlc/tvm/

在tvm项目路径下新建build子文件夹,并在当前路径下新建一个bash.sh文件,文件内容为:

cmake -G "Visual Studio 15 2017 Win64" -DCMAKE_BUILD_TYPE=Release \
  -DCMAKE_CONFIGURATION_TYPES="Release" .. \
  -DLLVM_DIR=D:\softW\LLVM\lib\cmake\llvm

后面LLVM路径对应到刚install生成的LLVM路径,打开生成的tvm.sln项目,编译运行。

3)安装

先新建一个conda环境变量:

conda create -n tf python==3.5

激活环境:

activate tf

分别安装tensorflow和mxnet

pip install tensorflow
pip install mxnet

分别进入tvm、topi、nnvm文件夹下,运行下面命令进行安装

python setup.py install

安装完成之后,可以进入tvm的tutorials子文件夹下,运行相关例程。

这里是一个ssd运行例程:

测试代码为:

#!/usr/bin/python3

import os
import tvm
import numpy as np
import time

from tvm.contrib.download import download
from tvm.contrib import graph_runtime

current_milli_time = lambda: int(round(time.time() * 1000))

test_image = "dog.jpg"
dshape = (1, 3, 512, 512)
#dshape = (1, 3, 608, 608)
dtype = "float32"

image_url = "https://cloud.githubusercontent.com/assets/3307514/20012567/" \
                    "cbb60336-a27d-11e6-93ff-cbc3f09f5c9e.jpg"

download(image_url, test_image)

# Preprocess image

import cv2
test_image_path = test_image
image = cv2.imread(test_image_path)
img_data = cv2.resize(image, (dshape[2], dshape[3]))
img_data = img_data[:, :, (2, 1, 0)].astype(np.float32)
img_data -= np.array([123, 117, 104])
img_data = np.transpose(np.array(img_data), (2, 0, 1))

ctx = tvm.cpu()
target="llvm"

#base = "deploy_ssd_resnet50_512/{}/".format(target)
#base = "deploy_ssd_inceptionv3_512/{}/".format(target)
#base = "deploy_ssd_mobilenet_512/{}/".format(target)
#base = "deploy_ssd_mobilenet_608/{}/".format(target)
#base = "cpu-model/"
base = "./"
path_lib = base + "model.so"
path_graph = base + "model.json"
path_param = base + "model.params"

graph = open(path_graph).read()
params = bytearray(open(path_param, "rb").read())
lib = tvm.module.load(path_lib)

class_names = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair",
               "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant",
               "sheep", "sofa", "train", "tvmonitor"]

######################################################################
# Create TVM runtime and do inference

# Build TVM runtime
m = graph_runtime.create(graph, lib, ctx)
m.load_params(params)
input_data = tvm.nd.array(img_data.astype(dtype))
# dryrun
m.run(data = input_data)
# execute
t1 = current_milli_time()
m.run(data = input_data)
# get outputs
tvm_output = m.get_output(0)
t2 = current_milli_time()
print(base)
print("time: {} ms".format(t2 - t1))
out = tvm_output.asnumpy()[0]
i = 0
for det in out:
    cid = int(det[0])
    if cid < 0:
        continue
    score = det[1]
    if score < 0.5:
         continue
    i += 1

    print(i, class_names[cid], det)

######################################################################
# Display result

def display(img, out, thresh=0.5):
    import random
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    mpl.rcParams['figure.figsize'] = (10, 10)
    pens = dict()
    plt.clf()
    plt.imshow(img)
    for det in out:
        cid = int(det[0])
        if cid < 0:
            continue
        score = det[1]
        if score < thresh:
            continue
        if cid not in pens:
            pens[cid] = (random.random(), random.random(), random.random())
        scales = [img.shape[1], img.shape[0]] * 2
        xmin, ymin, xmax, ymax = [int(p * s) for p, s in zip(det[2:6].tolist(), scales)]
        rect = plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False,
                             edgecolor=pens[cid], linewidth=3)
        plt.gca().add_patch(rect)
        text = class_names[cid]
        plt.gca().text(xmin, ymin-2, '{:s} {:.3f}'.format(text, score),
                       bbox=dict(facecolor=pens[cid], alpha=0.5),
                       fontsize=12, color='white')
    plt.show()

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
display(image, tvm_output.asnumpy()[0], thresh=0.45)

代码来自于github,链接为:

https://github.com/apivovarov/mxnet-ssd-tvm.git

tvm学习笔记(一):编译安装_第1张图片

参考资料:

https://zhuanlan.zhihu.com/p/58864652

https://lld.llvm.org/

https://blog.csdn.net/sanallen/article/details/81430150

你可能感兴趣的:(tvm学习笔记)