- 分析投资策略数据
Young_Zn_Cu
投资策略
投资策略分析(在实习最后一周,当然要再多学一点金融相关知识啦,于是就有了这篇文章,以下均出于个人对投资策略的浅薄见解,欢迎大家提出建议)任务:分析私募排排网上的数据,并根据不同的策略进行分析,写出报告由于本人之前对投资部分了解较少,所以名词解释会占相当大一部分篇幅,大家可以直接移步后面部分!私募投资投资策略分析数据名词解释投资策略名词解释股票策略债券策略期货及衍生品策略多资产策略组合基金对筛选出来
- Linux编程:嵌入式ARM平台Linux网络实时性能优化
橘色的喵
Linux性能优化功能优化arm开发linux网络实时性能优化内核优化
文章目录0.概要1.时钟周期与网络性能的权衡时钟周期(ClockPeriod)**优化策略:****副作用:**2.网络中断优化**问题:****优化策略:****副作用:**3.网络协议栈优化**优化策略:****副作用:**4.禁用内存页面交换(禁用Swap)为什么禁用Swap?**禁用Swap配置:****副作用:**5.配置`swappiness`为0**如何设置`swappiness`为
- LLM 大模型学习必知必会系列(一):大模型基础知识篇
汀、人工智能
LLM技术汇总人工智能自然语言处理promptRAGLLM模型训练模型部署
LLM大模型学习必知必会系列(一):大模型基础知识篇魔搭ModelScope开源的LLM模型魔搭ModelScope欢迎各个开源的LLM模型在社区上做开源分享。目前社区上已经承载了来自各个机构贡献的不同系列的LLM模型。并且社区的开发者也在这些模型的基础上,贡献了许多创新应用,并在ModelScope的创空间上进行分享。本专题初步梳理了当前社区上一些典型的LLM以及对应的创空间应用,方便大家对于L
- 《深入浅出LLM基础篇》(三):大模型结构分类
GoAI
深入浅出LLM深入浅出AI自然语言处理NLP大模型LLM人工智能transformerchatgpt
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介
- OpenWebUI,RAG+外部知识库+AI写文的开源应用
m0_74824780
人工智能开源
引言自从去年AI火起来之后,很多人便热衷于寻找适合自用的AI开源项目,把各家大模型API接入到自己的AI程序里,便可以通过AI辅助完成一系列日常任务,比如内容翻译/润色/总结/撰写、格式转换、数据分类、代码分析、角色扮演等等。一般情况下,大模型依靠自身训练数据便能够完成的任务质量偏高,像翻译总结、格式转换之类,市面上所有的AI程序基本都能够满足这一点需求;但是需要结合外部资料/超长上文信息/实时信
- 【Vim Masterclass 笔记10】S06L23:Vim 核心操作训练之 —— 文本的搜索、查找与替换操作(第二部分)
安冬的码畜日常
VimMasterclassvim笔记vim查找与替换
文章目录S06L23Search,Find,andReplace-PartTwo1文本替换命令`:s/old/new/`2指定范围的文本替换3特例:路径的替换4文件行号的配置5要点总结(1)搜索当前行(SameLineSearching)(2)跨行搜索(Searching)(3)替换命令(SubstituteCommand)写在前面根据李笑来《自学是门手艺》的建议,梳理完知识要点后又对这章内容制作
- DeepSeek底层揭秘——多头潜在注意力MLA
9命怪猫
AIai人工智能大模型
目录1.多头潜在注意力(MLA)2.核心功能3.技术要素4.难点挑战暨含解决方案5.技术路径6.应用场景7.实际案例:DeepSeek8.最新研究与技术进展9.未来趋势猫哥说1.多头潜在注意力(MLA)(1)定义“多头潜在注意力(Multi-HeadLatentAttention,MLA)”是一种基于注意力机制的深度学习方法,旨在通过多个注意力头(Multi-HeadAttention)对潜在空间
- 全面解析:AI大模型入门教程,让你的学习之路不再迷茫,这个大模型学习路线非常详细收藏这篇就够了!
AGI大模型老王
人工智能学习大模型AI大模型大模型学习大模型教程大模型入门
前言AI大模型,作为当前人工智能领域的热点,凭借其强大的处理复杂数据和任务的能力,受到广泛的关注和应用。无论你是技术小白还是有一定基础的开发者,本教程都将带你从入门到实践,逐步掌握AI大模型的核心技术。基础知识大模型概述定义:AI大模型是一种拥有海量参数和强大计算能力的神经网络模型,能够处理复杂的数据和任务。应用:广泛应用于自然语言处理、图像识别、生成等领域。学习大模型的意义提升技术能力:掌握大模
- Linux常见的性能优化策略
这多冒昧啊
linux服务器运维
目录1.CPU性能优化:调整进程优先级2.内存优化:禁用透明大页3.磁盘I/O优化:切换I/O调度器4.网络优化:TCP缓冲区调优5.文件句柄优化:高并发API服务器策略总结:1.CPU性能优化:调整进程优先级场景描述:某跨境电商平台在“黑色星期五”大促期间,订单处理系统(Java服务)出现响应延迟。运维团队通过pidstat-u1发现名为log_aggregator的Python日志收集进程(P
- Linux 基于共享内存的循环队列实现
打工人你好
Linux网络linux服务器
Linux基于共享内存的循环队列实现Linux基于共享内存的循环队列实现一、共享内存与循环队列基础1.1共享内存特性1.2循环队列优势二、系统关键技术分析2.1共享内存操作APIshmget()创建共享内存shmat()映射共享内存2.2模板类设计要点三、循环队列核心方法实现3.1初始化方法3.2入队操作3.3出队操作四、共享内存实践要点4.1使用流程4.2关键注意事项五、进程同步问题解决方案5.
- 区块链前线@2019.2.16
CryptoZen
区块链
落地实践:1.挪威推行原生加密货币作为其区块链智慧城市平台的唯一货币;2.美国食品和药物管理局FDA期望通过区块链技术提高药品供应链的安全;3.计划于今年夏季启动的莫斯科区块链创新基地目前需要一个知识产权评估机制;4.一份新的报告指出到2024年,基于区块链的全球能源公用事业市场将增长60%;5.阿根廷向巴拉圭出口农用化学品,接受比特币付款;6.现代汽车子公司与IBM合作,利用区块链技术改造其业务
- 谭浩强C语言程序设计(第五版)知识点总结(1)
锦翎掠霄
C语言c语言开发语言
第一章程序设计和C语言1.1什么是计算机程序程序的定义:程序是一组计算机能识别和执行的指令,每条指令对应一个特定的操作。1.2什么是计算机语言1、计算机语言发展三阶段及特点对比维度机器语言(低级语言)汇编语言(低级语言)高级语言表现形式二进制代码(0/1组合)助记符(如ADD/SUB)自然语言+数学表达式(如PRINT*语句)硬件依赖性完全依赖特定机器强依赖特定机器弱依赖,跨平台执行效率最高(直接
- 绘制第一和第二主周期小波系数图
赵孝正
小波分析小波变换
目录1.小波变换的结果2.提取第一和第二主周期的系数示例代码(假设`wavelet_coeffs`为小波变换结果):3.绘制系数图示例代码:4.解释图形5.其他注意事项绘制径流演变的第一和第二主周期小波系数图的步骤可以分为以下几步:1.小波变换的结果首先,需要确认已经进行过小波变换,得到的结果应该包括每个时间序列的不同尺度的系数。一般来说,这些系数包含多个周期(也叫频率分量)的信息,其中,第一主周
- PLC经典案例之交通灯,教你如何写程序
技术花境
单片机嵌入式硬件
在往期中我们已经讲解了足够的基础知识,今天我们来做一个实例吧,就以老生常谈的交通灯为例,个人认为还是很有价值的.。那么接下来我们先展示一下他的控制要求如下:信号灯受启动开关控制。当启动开关接通时,信号灯系统开始工作,先南、北红灯亮,东、西绿灯亮。当启动开关断开时,所有信号灯都熄灭。南、北红灯亮维持25s,在南、北红灯亮的同时东.西绿灯也亮,到20s时,东、西绿灯闪亮,闪亮3s后熄灭。在东西绿灯熄灭
- 大型风电机组遭遇“低空急流“,会发生什么?
赵孝正
风资源与微观选址前端
目录1.什么是低空急流?2.研究发现:不容忽视的影响3.潜在风险:扫塔隐患4.智慧应对:预警与防范5.启示与展望结语随着全球气候变暖,极端天气事件频发,低空急流这一特殊的大气现象正日益引起关注。当代风电产业正朝着大型化方向发展,风机高度不断攀升,这使得它们进入了低空急流的影响范围。那么,这种"低空急流"会对风电机组造成什么影响?我们又该如何应对?1.什么是低空急流?低空急流是大气边界层中的一种特殊
- 《Linux设备驱动开发具体解释(第3版)》进展同步更新
weixin_33943836
驱动开发内存管理嵌入式
本博实时更新《Linux设备驱动开发具体解释(第3版)》的最新进展。2015.2.26差点儿完毕初稿。本书已经rebase到开发中的Linux4.0内核,案例多数基于多核CORTEX-A9平台。[F]是修正或升级;[N]是新增知识点;[D]是删除的内容第1章《Linux设备驱动概述及开发环境构建》[D]删除关于LDD6410开发板的介绍[F]更新新的Ubuntu虚拟机[N]加入关于QEMU模拟ve
- 智能优化算法应用:基于群居蜘蛛算法与双伽马校正的图像自适应增强算法
智能算法研学社(Jack旭)
智能优化算法应用图像增强算法计算机视觉人工智能
智能优化算法应用:基于群居蜘蛛算法与双伽马校正的图像自适应增强算法-附代码文章目录智能优化算法应用:基于群居蜘蛛算法与双伽马校正的图像自适应增强算法-附代码1.全局双伽马校正2.群居蜘蛛算法3.适应度函数设计4.实验与算法结果5.参考文献6.Matlab代码摘要:本文主要介绍基于群居蜘蛛算法与双伽马校正的图像自适应增强算法。1.全局双伽马校正设图像的灰度值范围被归一化到[0,1]范围之内,基于全局
- Vue 前端开发中的路由知识:从入门到精通
chenNorth。
vue前端vue.js前端javascript
文章目录引言1.VueRouter简介1.1安装VueRouter1.2配置VueRouter1.3在Vue实例中使用VueRouter2.路由的基本用法2.1路由映射2.2路由视图2.3路由链接3.动态路由3.1动态路径参数3.2访问动态参数3.3响应路由参数的变化4.嵌套路由4.1定义嵌套路由4.2渲染嵌套路由5.路由守卫5.1全局守卫5.2路由独享守卫5.3组件内守卫6.路由懒加载6.1使用
- DeepSeek+Dify 轻松搞定从 0 到 1 搭建专属本地知识库
LCG元
大模型人工智能
目录**1.安装和配置Ollama****1.1跨平台安装指南****验证安装****1.2部署DeepSeek模型****下载模型****加载模型****验证模型功能****2.安装和配置Dify****2.1安装Docker****2.2安装Dify****克隆源码****启动容器****配置环境变量****3.构建和部署本地知识库****3.1创建知识库****上传文档****管理内容***
- 【Linux刷题练习】
Thenunaoer
刷题linux
题目1题目:Linux文件权限-rwxr-xr-x是什么意思,怎样变更文件夹以及下面所有文件的拥有者?正确答案:A知识点:文件权限:-rwxr-xr-x表示文件权限:第一个-表示文件类型,如果是d则表示目录。rwx表示文件所有者的权限:可读(r)、可写(w)、可执行(x)。r-x表示文件所有者所在组的用户权限:可读(r)、不可写(-)、可执行(x)。r-x表示其他用户的权限:可读(r)、不可写(-
- 蓝桥杯篇---IAP15F2K61S2串口
Ronin-Lotus
上位机知识篇嵌入式硬件篇蓝桥杯单片机职场和发展嵌入式硬件cIAP15F2K61S2
文章目录前言简介串口通信的基本参数1.波特率2.数据位3.停止位4.校验位串口相关寄存器1.SCON2.SBUF3.PCON4.TMOD5.TH1/TL1串口使用步骤1.配置波特率2.配置串口模式3.使能串口中断4.发送数据5.接收数据6.处理中断示例代码:串口发送与接收示例代码:串口接收数据并回显注意事项1.波特率设置2.中断优先级3.数据缓冲区4.错误处理总结前言本文仅仅简单介绍了IAP15F
- unity中的双击按钮检测和长按按钮的检测
头号理想
游戏效果unity
之前我写过关于UGUI的接口的几篇博客地址1地址2之后今天使用上边的知识来实现一下按钮的双击和按钮长按的检测其实我们的思路就是每次按下检测按下时间如果长按时间超过某一特定的值那么我们判定长按至于双击的检测我们是当第一次按下之后抬起开始计时在特定值之前我们如果检测到按下第二次我们判定双击按钮usingUnityEngine;usingUnityEngine.Events;usingUnityEngi
- Node.js 中的 fs 模块详解
小灰灰学编程
Node.jsnode.js前端
fs(FileSystem)模块是Node.js的核心模块之一,用于处理文件系统的操作,包括文件的读取、写入、删除、重命名等。它提供了同步和异步两种操作方式,适用于不同的场景。1.前置知识1.1文件系统文件系统是操作系统用于管理文件和目录的一种机制。Node.js通过fs模块提供了对文件系统的访问能力。1.2同步与异步同步操作:阻塞代码执行,直到操作完成。异步操作:非阻塞,通过回调函数、Promi
- android database SQLite
一路阳光随行
Androidsqlitedatabaseandroid存储数据库
2.数据库基本知识观花对于一些和我一样还没有真正系统学习数据库技术的同学来说,把SQL92标准中的一些基本概念、基本语句快速的了解一下,是很有必要的,这样待会用Android的database相关方法去执行一些数据库语句时就不会茫然了。①数据库的基本结构——表格表格是数据库中储存资料的基本架构。表格被分为栏位(column)及列位(row)。每一列代表一笔资料,而每一栏代表一笔资料的一部份。举例来
- 基于医疗知识图谱的问答系统 基于知识图谱的多轮问答 附完整代码数据详细教程
计算机毕设论文
深度学习-自然语言处理nlp医疗知识知识图谱Neo4j多轮问答
这个项目已实现的功能:1.闲聊类的单论对话2.基于知识图谱的多轮问答数据链接:链接:https://pan.baidu.com/s/1oPr1m8aaIeoMu53OIEULPg提取码:fh39一、项目来源由于之前用Rasa构建过对话系统,因此一直想脱离Rasa这个开源框架,从底层开始构建一个可以实现相似功能的对话系统,毕竟框架用的再溜,都不如自己做一遍。恰巧在Rasa群里看到了前辈分享的一个项目
- 第TR5周:Transformer实战:文本分类
计算机真好丸
transformer分类深度学习
文章目录1.准备环境1.1环境安装1.2加载数据2.数据预处理2.1构建词典2.2生成数据批次和迭代器2.3构建数据集3.模型构建3.1定义位置编码函数3.2定义Transformer模型3.3初始化模型3.4定义训练函数3.5定义评估函数4.训练模型4.1模型训练5.总结:本文为365天深度学习训练营中的学习记录博客原作者:K同学啊1.准备环境1.1环境安装这是一个使用PyTorch通过Tran
- [AcWing] 算法基础课(一)学算法强推哦
vo很懒
算法算法leetcode数据结构
第一讲基础算法本文题目及代码全部来自AcWing,强推!(因为没有接触过C++所以一开始学起来不是很容易,慢慢听下去边查边学就好啦)文章目录第一讲基础算法1.排序1.1快速排序1.2归并排序2.二分2.1整数二分(较麻烦)2.2浮点数二分3.前缀和与差分3.1前缀和3.2差分4.双指针5.位运算6.离散化7.区间合并1.排序1.1快速排序快速排序基础算法:题目:#includeusingnames
- 知识图谱大模型系列之 11什么是 Neo4j LLM 知识图谱构建器?
知识大胖
NVIDIAGPU和大语言模型开发教程知识图谱neo4j人工智能llm
简介LLM知识图谱构建器是Neo4j的GraphRAG生态系统工具之一,可让您将非结构化数据转换为动态知识图谱。它与检索增强生成(RAG)聊天机器人集成,可实现自然语言查询和对数据的可解释洞察。推荐文章《使用ChatGPT从视频脚本创建知识图谱,使用GPT-4作为领域专家来帮助您从视频转录中提取知识(教程含完整源码)》权重2,知识图谱类《赋能知识图谱形成:利用BERTopic、DataMapPlo
- AI大模型的技术突破与传媒行业变革
AIQL
行业分析人工智能传媒
性能与成本:AI大模型的“双轮驱动”过去几年,AI大模型的发展经历了从实验室到产业化的关键转折。2025年初,以DeepSeekR1为代表的模型在数学推理、代码生成等任务中表现超越国际头部产品,而训练成本仅为传统模型的几十分之一。这一突破的核心在于三大技术创新:MoE架构升级:通过部署256个细粒度专家网络,减少知识冗余,提升模型效率;MLA注意力机制:动态压缩推理过程中的缓存需求,降低GPU内存
- 电子电气架构 -- 智能汽车电子电气架构开发关键技术
车载诊断技术
电子电器架构开发流程车载电子电气架构车载通信架构架构汽车电子电器架构网络SOA
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师:所有人的看法和评价都是暂时的,只有自己的经历是伴随一生的,几乎所有的担忧和畏惧,都是来源于自己的想象,只有你真的去做了,才会发现有多快乐。人就应该满脑子都是前途,不再在意别人的看法不再害怕别人讨厌自己,不再畏手畏脚忧心忡忡也不会在睡前反回忆白天的行为,是否让对方产生误解用你那精神内耗
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep