Java 垃圾回收机制与几种垃圾回收算法

算法

  • 标记清除法
  • 复制算法
  • 标记整理算法
  • 分代收集算法
  1. Mark-Sweep(标记-清除)算法
    这是最基础的垃圾回收算法,之所以说它是最基础的是因为它最容易实现,思想也是最简单的。标记-清除算法分为两个阶段:标记阶段和清除阶段。标记阶段的任务是标记出所有需要被回收的对象,清除阶段就是回收被标记的对象所占用的空间。具体过程如下图所示:
    Java 垃圾回收机制与几种垃圾回收算法_第1张图片
    存在问题: 回收后会产生大量的内存碎片,因此再次分配大对象时分配空间不足,会再一次触发回收算法。
  2. Copying(复制)算法
    为了解决Mark-Sweep算法的缺陷,Copying算法就被提了出来。它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用的内存空间一次清理掉,这样一来就不容易出现内存碎片的问题。具体过程如下图所示:
    Java 垃圾回收机制与几种垃圾回收算法_第2张图片
    存在问题: 这种方法简单但是有一半的空间被浪费。Copying算法的效率跟存活对象的数目多少有很大的关系,如果存活对象很多,那么Copying算法的效率将会大大降低。
  3. Mark-Compact(标记-整理)算法(压缩法)
    为了解决Copying算法的缺陷,充分利用内存空间,提出了Mark-Compact算法。该算法标记阶段和Mark-Sweep一样,但是在完成标记之后,它不是直接清理可回收对象,而是将存活对象都向一端移动,然后清理掉端边界以外的内存。具体过程如下图所示:
    Java 垃圾回收机制与几种垃圾回收算法_第3张图片
    存在问题: 也是需要移动整理 比较费时间
  4. Generational Collection(分代收集)算法
    分代收集算法是目前大部分JVM的垃圾收集器采用的算法。它的核心思想是根据对象存活的生命周期将内存划分为若干个不同的区域。一般情况下将堆区划分为老年代(Tenured Generation)和新生代(Young Generation),老年代的特点是每次垃圾收集时只有少量对象需要被回收,而新生代的特点是每次垃圾回收时都有大量的对象需要被回收,那么就可以根据不同代的特点采取最适合的收集算法。
    目前大部分垃圾收集器对于新生代都采取复制算法,因为新生代中每次垃圾回收都要回收大部分对象,也就是说需要复制的操作次数较少,但是实际中并不是按照1:1的比例来划分新生代的空间的,一般来说是将新生代划分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden空间和其中的一块Survivor空间,当进行回收时,将Eden和Survivor中还存活的对象复制到另一块Survivor空间中,然后清理掉Eden和刚才使用过的Survivor空间。
    而由于老年代的特点是每次回收都只回收少量对象,一般使用的是标记-整理算法(压缩法)

典型的垃圾收集器

收集算法是 内存回收的理论基础,而垃圾收集器就是内存回收的具体实现。下面介绍一下HotSpot(JDK 7)虚拟机提供的几种垃圾收集器,用户可以根据自己的需求组合出各个年代使用的收集器。

  1. Serial/Serial Old收集器 是最基本最古老的收集器,它是一个单线程收集器,并且在它进行垃圾收集时,必须暂停所有用户线程。Serial收集器是针对新生代的收集器,采用的是Copying算法,Serial Old收集器是针对老年代的收集器,采用的是Mark-Compact算法。它的优点是实现简单高效,但是缺点是会给用户带来停顿。

  2. ParNew收集器 是Serial收集器的多线程版本,使用多个线程进行垃圾收集。

  3. Parallel Scavenge收集器 是一个新生代的多线程收集器(并行收集器),它在回收期间不需要暂停其他用户线程,其采用的是Copying算法,该收集器与前两个收集器有所不同,它主要是为了达到一个可控的吞吐量。

  4. 4.Parallel Old收集器 是Parallel Scavenge收集器的老年代版本(并行收集器),使用多线程和Mark-Compact算法。

  5. CMS(Current Mark Sweep)收集器 是一种以获取最短回收停顿时间为目标的收集器,它是一种并发收集器,采用的是Mark-Sweep算法。

  6. G1收集器 是当今收集器技术发展最前沿的成果,它是一款面向服务端应用的收集器,它能充分利用多CPU、多核环境。因此它是一款并行与并发收集器,并且它能建立可预测的停顿时间模型。
    在G1算法中,采用了另外一种完全不同的方式组织堆内存,堆内存被划分为多个大小相等的内存块(Region),每个Region是逻辑连续的一段内存,结构如下
    Java 垃圾回收机制与几种垃圾回收算法_第4张图片
    每个Region被标记了E、S、O和H,说明每个Region在运行时都充当了一种角色,其中H是以往算法中没有的,它代表Humongous,这表示这些Region存储的是巨型对象(humongous object,H-obj),当新建对象大小超过Region大小一半时,直接在新的一个或多个连续Region中分配,并标记为H。

Region
堆内存中一个Region的大小可以通过-XX:G1HeapRegionSize参数指定,大小区间只能是1M、2M、4M、8M、16M和32M,总之是2的幂次方,如果G1HeapRegionSize为默认值,则在堆初始化时计算Region的实践大小,具体实现如下:
Java 垃圾回收机制与几种垃圾回收算法_第5张图片
默认把堆内存按照2048份均分,最后得到一个合理的大小。
GC模式
G1中提供了三种模式垃圾回收模式,young gc、mixed gc 和 full gc,在不同的条件下被触发。
young gc
发生在年轻代的GC算法,一般对象(除了巨型对象)都是在eden region中分配内存,当所有eden region被耗尽无法申请内存时,就会触发一次young gc,这种触发机制和之前的young gc差不多,执行完一次young gc,活跃对象会被拷贝到survivor region或者晋升到old region中,空闲的region会被放入空闲列表中,等待下次被使用。

参数 含义
-XX:MaxGCPauseMillis 设置G1收集过程目标时间,默认值200ms
-XX:G1NewSizePercent 新生代最小值,默认值5%
-XX:G1MaxNewSizePercent 新生代最大值,默认值60%

mixed gc
当越来越多的对象晋升到老年代old region时,为了避免堆内存被耗尽,虚拟机会触发一个混合的垃圾收集器,即mixed gc,该算法并不是一个old gc,除了回收整个young region,还会回收一部分的old region,这里需要注意:是一部分老年代,而不是全部老年代,可以选择哪些old region进行收集,从而可以对垃圾回收的耗时时间进行控制。
那么mixed gc什么时候被触发?
先回顾一下cms的触发机制,如果添加了以下参数:

-XX:CMSInitiatingOccupancyFraction=80 
-XX:+UseCMSInitiatingOccupancyOnly

当老年代的使用率达到80%时,就会触发一次cms gc。相对的,mixed gc中也有一个阈值参数 -XX:InitiatingHeapOccupancyPercent,当老年代大小占整个堆大小百分比达到该阈值时,会触发一次mixed gc.
mixed gc的执行过程有点类似cms,主要分为以下几个步骤:

initial mark: 初始标记过程,整个过程STW,标记了从GC Root可达的对象
concurrent marking: 并发标记过程,整个过程gc collector线程与应用线程可以并行执行,标记出GC Root可达对象衍生出去的存活对象,并收集各个Region的存活对象信息
remark: 最终标记过程,整个过程STW,标记出那些在并发标记过程中遗漏的,或者内部引用发生变化的对象
clean up: 垃圾清除过程,如果发现一个Region中没有存活对象,则把该Region加入到空闲列表中

full gc
如果对象内存分配速度过快,mixed gc来不及回收,导致老年代被填满,就会触发一次full gc,G1的full gc算法就是单线程执行的serial old gc,会导致异常长时间的暂停时间,需要进行不断的调优,尽可能的避免full gc.

你可能感兴趣的:(JAVA基础)