leetcode题解分析_221. Maximal Square(图文分析)

【题目】

题目链接
Given a 2D binary matrix filled with 0’s and 1’s, find the largest square containing only 1’s and return its area.

For example, given the following matrix:


1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 4.


【分析】
dp
刚开始想的是
matrix[i-1][j-1]–>matrix[i][j]
vec[i][j]表示以该坐标为右下角的正方形的边长


比如:

1 1 0
1 1 1

vec[0][0] = 1
vec[0][1] = 1
vec[0][2] = 0
vec[1][0] = 1
vec[1][1] = 2
vec[1][2] = 1


对于matrix[i][j]:
每次判断matrix[i-1][j-1]后还需要从判断matrix[i][ j- (1–>matrix[i-1][j-1]) ]是否有为’0’的情况,有的话终止循环,得到matrix[i][j]的值
举例:
leetcode题解分析_221. Maximal Square(图文分析)_第1张图片
(红色代表’1’,黄色代表’0’)
当我们遍历matrix[i][j]时,matrix[i][j]=’1’,为红色
(1)找[i-1][j-1],假设我们已经计算的vec[i-1][j-1]=3(即边长为3,蓝色方框中)
(2)就开始遍历matrix[i][ j- (1–>matrix[i-1][j-1]) ]==’0’?,一旦等于’0’,就终止,从而得到vec[i][j]的边长
(3)上面的例子中我们看到matrix[i-3][j] == ‘0’(为黄色),则得到以[i][j]为右下角的方形边长顶多为3,即下面的黑框中的区域
leetcode题解分析_221. Maximal Square(图文分析)_第2张图片
所以这种做法的复杂度最坏O(n**3)
但是leetcode上的样例比较小,所以这种做法也能跑得很好
runtime:
leetcode题解分析_221. Maximal Square(图文分析)_第3张图片


好了,下面我们来看O(n**2)的解法:
其实就是:
matrix[i-1][j-1],matrix[i-1][j],matrix[i][j-1]–>matrix[i][j] 很强
跑出来也是9ms

代码:

class Solution {
public:
    int maximalSquare(vector<vector<char>>& matrix) 
    {
        int rowSize = matrix.size();
        if(!rowSize) return 0;
        int colSize = matrix[0].size();
        if(!colSize) return 0;
        int square[rowSize+1][colSize+1];
        memset(square, 0, sizeof(int)*(rowSize+1)*(colSize+1));
        int maxWidth = 0;
        for(int r = 1; r <= rowSize; ++r)
        {
            for(int c = 1; c <= colSize; ++c)
            {
                if(matrix[r-1][c-1] == '1')
                    square[r][c] = min(min(square[r-1][c], square[r][c-1]), square[r-1][c-1]) + 1;
                maxWidth = max(maxWidth, square[r][c]);
            }
        }
        return maxWidth*maxWidth;
    }
};

当然可以这样写:

int maximalSquare2(vector<vector<char>>& matrix) {
    int row = matrix.size();
    if( row == 0 ) return 0;
    int col = matrix[0].size() , max_dis = 0;
    vector<vector<int>> square( row+1 , vector<int>( col + 1 , 0 ) );
    for(int i = 1; i <= row; ++i){
        for(int j = 1; j <= col; ++j){
            if(matrix[i-1][j-1] == '1')
                square[i][j] = min(min(square[i-1][j], square[i][j-1]), square[i-1][j-1]) + 1;
            max_dis = max(max_dis, square[i][j]);
        }
    }
    return max_dis*max_dis;
    }

你可能感兴趣的:(&,C++)