java常用并发工具介绍

 本文主要介绍的工具包括:

  • CountDownLatch

  • Semaphore

  • CyclicBarrier

  • Exchanger

CountDownLatch

CountDownLatch可以使一个或多个线程等待一组事件发生。在CountDownLatch内部维护一个计数器(被初始化为一个正整数),表示需要等待事件的数量。countDown()方法减少一个事件数量,await()将等待直到计数器为零的时候,才继续执行await后面的代码。如果计数器不为零,那么await将一直会阻塞等待直到计数器为零,或者阻赛线程中断/超时。

@Test
public void test() throws InterruptedException {
    // thread number
    final int threadNum = Runtime.getRuntime().availableProcessors() + 1;
    // start event
    final CountDownLatch startEvent = new CountDownLatch(1);
    // finish event
    final CountDownLatch finishEvent = new CountDownLatch(threadNum);

    for (int i = 0; i < threadNum; i++) {
        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    // await for start
                    startEvent.await();
                    System.out.println(Thread.currentThread() + " start at : " + System.currentTimeMillis());
                    // current thread finish
                    finishEvent.countDown();
                } catch (InterruptedException ignore) {

                }
            }
        }).start();

        // sleep 0.5ms
        TimeUnit.MILLISECONDS.sleep(500);
    }

    long startTime = System.currentTimeMillis();

    startEvent.countDown();
    // wait for all thread finish
    finishEvent.await();
    System.out.println("total finish cost : " + (System.currentTimeMillis() - startTime) + "ms");

}

这个例子展示了如何在同一时间启动threadNum个线程,并且这threadNum个线程都完成后,记录执行结果。startEvent.await()将等待直到调用startEvent.countDown()。这是,所有线程在同一时间启动。当每个线程执行完毕的时候,会调用finishEvent.countDown()通知给主线程,finishEvent.await()将等待直到所有子线程都执行完毕。

打印结果:

Thread[Thread-1,5,main] start at : 1359782125125
Thread[Thread-8,5,main] start at : 1359782125125
Thread[Thread-7,5,main] start at : 1359782125125
Thread[Thread-6,5,main] start at : 1359782125125
Thread[Thread-5,5,main] start at : 1359782125125
Thread[Thread-3,5,main] start at : 1359782125125
Thread[Thread-0,5,main] start at : 1359782125125
Thread[Thread-2,5,main] start at : 1359782125125
Thread[Thread-4,5,main] start at : 1359782125125
total finish cost : 1ms

Semaphore

Semaphore在内部持有一个虚拟的许可组(初始化的时候可以设置虚拟组的数量),当执行某个操作的时候,调用acquire获得许可,在操作执行完成后调用release释放许可。如果没有许可可用,那么acquire方法会一直阻赛直到有许可可用为止,或者执行获取许可的线程终端或阻赛。

Semaphore可以用来控制某种资源的使用数量,或者同时使用特定资源的数量。利用这个特性,可以实现某种资源的资源池或者对容器实加边界。

@Test
public void test() throws InterruptedException {

    final BoundedList list = new BoundedList<>(5);

    new Thread(new Runnable() {
        @Override
        public void run() {
            int index = 0;
            while (true) {
                try {
                    list.add(index++);
                    System.out.println(System.currentTimeMillis() + " add " + index);
                } catch (InterruptedException ignore) {

                }
            }
        }
    }).start();

    TimeUnit.SECONDS.sleep(1);

    new Thread(new Runnable() {
        @Override
        public void run() {
            int index = 0;
            while (true) {
                try {
                    list.remove(index++);
                    System.out.println(System.currentTimeMillis() + " remove " + index);
                    TimeUnit.MILLISECONDS.sleep(500);
                } catch (InterruptedException ignore) {
                }
            }
        }
    }).start();
    Thread.currentThread().join();
}

static class BoundedList {

    private final List list;
    private final Semaphore semaphore;

    public BoundedList(int bound) {
        this.list = new ArrayList<>();
        semaphore = new Semaphore(bound);
    }

    public boolean add(T o) throws InterruptedException {
        semaphore.acquire();
        boolean added = false;
        try {
            added = list.add(o);
            return added;
        } finally {
            if (!added) {
                semaphore.release();
            }
        }
    }

    public boolean remove(T o) {
        boolean removed = list.remove(o);
        if (removed) {
            semaphore.release();
        }
        return removed;
    }
}        

这个例子展示了一个带边界的List,当向集合中添加元素的时候,首先获取许可。如果添加失败了,那么释放许可。当删除集合中的元素的时候,如果删除成功,释放一个许可。这样就能保证集合中的元素都是获得许可后才添加进来的,从而保证了集合的边界。

打印结果:

1359787233784 add 1
1359787233784 add 2
1359787233784 add 3
1359787233784 add 4
1359787233784 add 5
1359787234787 add 6
1359787234787 remove 1
1359787235288 remove 2
1359787235288 add 7
1359787235789 remove 3
1359787235789 add 8
1359787236290 remove 4
1359787236290 add 9
….

在这个例子中,生产者向集合中添加元素,消费者删除元素,因为生产者的速度大于消费者,所以当集合中元素等于5的时候,就必须等待消费者删除一个元素后才能再继续添加,从打印结果可以看出这点。

CyclicBarrier

CyclicBarrier和CountDownLatch有些类似,它阻塞一组线程直到某个事件发生。可以把CyclicBarrier理解成一个障碍,当所有线程都到达这个"障碍"的时候,才能继续下个事件。如果所有线程到达barrier处,barrier打开释放所有线程,并且barrier可以继续使用。如果await方法超时,或者被中断,那么认为barrier被打破,所有在await上阻塞的线程都将抛出BrokenBarrierException

@Test
public void test() throws InterruptedException {

    ExecutorService exec = Executors.newFixedThreadPool(Runtime.getRuntime()
            .availableProcessors() + 1);

    final int gate_threshold = 4;
    final CyclicBarrier gate = new CyclicBarrier(gate_threshold, new Runnable() {
        @Override
        public void run() {
            System.out.println("4 threads arrived, gate open...");
        }
    });

    while (true) {
        TimeUnit.MILLISECONDS.sleep((long) (Math.random() * 1000));
        exec.execute(new Runnable() {
            @Override
            public void run() {
                System.out.println(Thread.currentThread() + " arrived");
                try {
                    gate.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } catch (BrokenBarrierException e) {
                    e.printStackTrace();
                }
            }
        });
    }
}

这个例子假设有一堆线程到达gate处,每当到达gate处的线程数达到gate_threshold时,gate打开释放这些线程并进入下次一次循环。

Exchanger

Exchanger提供两个线程以线程安全的形式交换数据,exchange等待另一个线程到达exchange方法,然后把数据给另一个线程并且接收另一个线程交换过来的数据。

@Test
public void test() throws InterruptedException {

    final int size =10;
    final Exchanger> exchanger = new Exchanger<>();
    final List emptyList = new ArrayList<>();
    final List fullList = new ArrayList<>();

    Thread producer = new Thread(new Runnable() {
        @Override
        public void run() {
            List currentList = emptyList;
            while (true){
               if(currentList.size() currentList = fullList;
            while (true){
                if(currentList.size()!=0){
                    Integer remove = currentList.remove(0);
                    System.out.println("consumer : " + remove);
                    try {
                        TimeUnit.MILLISECONDS.sleep((long) (Math.random()*1000));
                    } catch (InterruptedException ignore) {
                    }
                }else {
                    try {
                        System.out.println("consumer : list empty wait exchange");
                        currentList =  exchanger.exchange(currentList);
                        System.out.println("consumer : exchanged");
                    } catch (InterruptedException ignore) {

                    }
                }
            }
        }
    });
    producer.start();
    consumer.start();
    producer.join();
    consumer.join();
}

这个例子展示了一个生产者/消费者的例子。当生产者填慢list后,等待交换。同样当消费者消耗完list,也等待交换。

 

你可能感兴趣的:(java,java,并发,工具)