函数式接口在Java中是指:有且仅有一个抽象方法的接口。
函数式接口,即适用于函数式编程场景的接口。而Java中的函数式编程体现就是Lambda,所以函数式接口就是可 以适用于Lambda使用的接口。只有确保接口中有且仅有一个抽象方法,Java中的Lambda才能顺利地进行推导。
备注:“语法糖”是指使用更加方便,但是原理不变的代码语法。例如在遍历集合时使用的for-each语法,其实 底层的实现原理仍然是迭代器,这便是“语法糖”。从应用层面来讲,Java中的Lambda可以被当做是匿名内部 类的“语法糖”,但是二者在原理上是不同的。
只要确保接口中有且仅有一个抽象方法即可:
修饰符 interface 接口名称 {
public abstract 返回值类型 方法名称(可选参数信息);
// 其他非抽象方法内容
}
只能有一个抽象方法!默认方法等不限制
与 @Override 注解的作用类似,Java 8中专门为函数式接口引入了一个新的注解: @FunctionalInterface 。该注 解可用于一个接口的定义上;
一旦使用该注解来定义接口,编译器将会强制检查该接口是否确实有且仅有一个抽象方法,否则将会报错。需要注意的是,即使不使用该注解,只要满足函数式接口的定义,这仍然是一个函数式接口,使用起来都一样。 (注解用于规范性编写代码)
/*
函数式接口:有且只有一个抽象方法的接口,称之为函数式接口
当然接口中可以包含其他的方法(默认,静态,私有)
@FunctionalInterface注解
作用:可以检测接口是否是一个函数式接口
是:编译成功
否:编译失败(接口中没有抽象方法抽象方法的个数多余1个)
*/
@FunctionalInterface
public interface MyFunctionalInterface {
//定义一个抽象方法
public abstract void method();
}
函数式接口使用:
/*
函数式接口的使用:一般可以作为方法的参数和返回值类型
*/
public class Demo {
//定义一个方法,参数使用函数式接口MyFunctionalInterface
public static void show(MyFunctionalInterface myInter){
myInter.method();
}
public static void main(String[] args) {
//调用show方法,方法的参数是一个接口,所以可以传递接口的实现类对象
show(new MyFunctionalInterfaceImpl());
//调用show方法,方法的参数是一个接口,所以我们可以传递接口的匿名内部类
show(new MyFunctionalInterface() {
@Override
public void method() {
System.out.println("使用匿名内部类重写接口中的抽象方法");
}
});
//调用show方法,方法的参数是一个函数式接口,所以我们可以Lambda表达式
show(()->{
System.out.println("使用Lambda表达式重写接口中的抽象方法");
});
//简化Lambda表达式
show(()-> System.out.println("使用Lambda表达式重写接口中的抽象方法"));
}
}
有些场景的代码执行后,结果不一定会被使用,从而造成性能浪费。而Lambda表达式是延迟执行的,这正好可以 作为解决方案,提升性能。 例如下面的代码:
/*
日志案例
发现以下代码存在的一些性能浪费的问题
调用showLog方法,传递的第二个参数是一个拼接后的字符串
先把字符串拼接好,然后在调用showLog方法
showLog方法中如果传递的日志等级不是1级
那么就不会是如此拼接后的字符串
所以感觉字符串就白拼接了,存在了浪费
*/
public class Demo01Logger {
//定义一个根据日志的级别,显示日志信息的方法
public static void showLog(int level, String message){
//对日志的等级进行判断,如果是1级别,那么输出日志信息
if(level==1){
System.out.println(message);
}
}
public static void main(String[] args) {
//定义三个日志信息
String msg1 = "Hello";
String msg2 = "World";
String msg3 = "Java";
//调用showLog方法,传递日志级别和日志信息
showLog(2,msg1+msg2+msg3);
}
}
这段代码存在问题:无论级别是否满足要求,作为 log
方法的第二个参数,三个字符串一定会首先被拼接并传入方 法内,然后才会进行级别判断。如果级别不符合要求,那么字符串的拼接操作就白做了,存在性能浪费。
备注:SLF4J是应用非常广泛的日志框架,它在记录日志时为了解决这种性能浪费的问题,并不推荐首先进行 字符串的拼接,而是将字符串的若干部分作为可变参数传入方法中,仅在日志级别满足要求的情况下才会进 行字符串拼接。例如: LOGGER.debug(“变量{}的取值为{}。”, “os”, “macOS”) ,其中的大括号 {} 为占位 符。如果满足日志级别要求,则会将“os”和“macOS”两个字符串依次拼接到大括号的位置;否则不会进行字 符串拼接。这也是一种可行解决方案,但Lambda可以做到更好。
接口:
@FunctionalInterface
public interface MessageBuilder {
//定义一个拼接消息的抽象方法,返回被拼接的消息
public abstract String builderMessage();
}
实现:
/*
使用Lambda优化日志案例
Lambda的特点:延迟加载
Lambda的使用前提,必须存在函数式接口
*/
public class Demo02Lambda {
//定义一个显示日志的方法,方法的参数传递日志的等级和MessageBuilder接口
public static void showLog(int level, MessageBuilder mb){
//对日志的等级进行判断,如果是1级,则调用MessageBuilder接口中的builderMessage方法
if(level==1){
System.out.println(mb.builderMessage());
}
}
public static void main(String[] args) {
//定义三个日志信息
String msg1 = "Hello";
String msg2 = "World";
String msg3 = "Java";
//调用showLog方法,参数MessageBuilder是一个函数式接口,所以可以传递Lambda表达式
/*showLog(2,()->{
//返回一个拼接好的字符串
return msg1+msg2+msg3;
});*/
/*
使用Lambda表达式作为参数传递,仅仅是把参数传递到showLog方法中
只有满足条件,日志的等级是1级
才会调用接口MessageBuilder中的方法builderMessage
才会进行字符串的拼接
如果条件不满足,日志的等级不是1级
那么MessageBuilder接口中的方法builderMessage也不会执行
所以拼接字符串的代码也不会执行
所以不会存在性能的浪费
*/
showLog(1,()->{
System.out.println("不满足条件不执行");
//返回一个拼接好的字符串
return msg1+msg2+msg3;
});
}
}
在不符合级别要求的情况下,Lambda将不会执行。从而达到节省性能的效果。
扩展:实际上使用内部类也可以达到同样的效果,只是将代码操作延迟到了另外一个对象当中通过调用方法 来完成。而是否调用其所在方法是在条件判断之后才执行的。
如果抛开实现原理不说,Java中的Lambda表达式可以被当作是匿名内部类的替代品。如果方法的参数是一个函数 式接口类型,那么就可以使用Lambda表达式进行替代。使用Lambda表达式作为方法参数,其实就是使用函数式 接口作为方法参数。
例如 java.lang.Runnable
接口就是一个函数式接口,假设有一个 startThread
方法使用该接口作为参数,那么就 可以使用Lambda
进行传参。这种情况其实和 Thread
类的构造方法参数为 Runnable
没有本质区别。
/*
例如java.lang.Runnable接口就是一个函数式接口,
假设有一个startThread方法使用该接口作为参数,那么就可以使用Lambda进行传参。
这种情况其实和Thread类的构造方法参数为Runnable没有本质区别。
*/
public class Demo01Runnable {
//定义一个方法startThread,方法的参数使用函数式接口Runnable
public static void startThread(Runnable run){
//开启多线程
new Thread(run).start();
}
public static void main(String[] args) {
//调用startThread方法,方法的参数是一个接口,那么我们可以传递这个接口的匿名内部类
startThread(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"-->"+"线程启动了");
}
});
//调用startThread方法,方法的参数是一个函数式接口,所以可以传递Lambda表达式
startThread(()->{
System.out.println(Thread.currentThread().getName()+"-->"+"线程启动了");
});
//优化Lambda表达式
startThread(()->System.out.println(Thread.currentThread().getName()+"-->"+"线程启动了"));
}
}
类似地,如果一个方法的返回值类型是一个函数式接口,那么就可以直接返回一个Lambda表达式。当需要通过一 个方法来获取一个 java.util.Comparator 接口类型的对象作为排序器时,就可以调该方法获取。
/*
如果一个方法的返回值类型是一个函数式接口,那么就可以直接返回一个Lambda表达式。
当需要通过一个方法来获取一个java.util.Comparator接口类型的对象作为排序器时,就可以调该方法获取。
*/
public class Demo02Comparator {
//定义一个方法,方法的返回值类型使用函数式接口Comparator
public static Comparator<String> getComparator(){
//方法的返回值类型是一个接口,那么我们可以返回这个接口的匿名内部类
/*return new Comparator() {
@Override
public int compare(String o1, String o2) {
//按照字符串的降序排序
return o2.length()-o1.length();
}
};*/
//方法的返回值类型是一个函数式接口,所有我们可以返回一个Lambda表达式
/*return (String o1, String o2)->{
//按照字符串的降序排序
return o2.length()-o1.length();
};*/
//继续优化Lambda表达式
return (o1, o2)->o2.length()-o1.length();
}
public static void main(String[] args) {
//创建一个字符串数组
String[] arr = {"aaa","b","cccccc","dddddddddddd"};
//输出排序前的数组
System.out.println(Arrays.toString(arr));//[aaa, b, cccccc, dddddddddddd]
//调用Arrays中的sort方法,对字符串数组进行排序
Arrays.sort(arr,getComparator());
//输出排序后的数组
System.out.println(Arrays.toString(arr));//[dddddddddddd, cccccc, aaa, b]
}
}
JDK提供了大量常用的函数式接口以丰富Lambda的典型使用场景,它们主要在 java.util.function 包中被提供。 (这些接口在java的steam流中使用)
java.util.function.Supplier
接口仅包含一个无参的方法: T get()
。用来获取一个泛型参数指定类型的对 象数据。
由于这是一个函数式接口,这也就意味着对应的Lambda表达式需要“对外提供”一个符合泛型类型的对象数据。(Supplier接口也称为生产者接口,即提供(生产)对象 并返回)
/*
常用的函数式接口
java.util.function.Supplier接口仅包含一个无参的方法:T get()。用来获取一个泛型参数指定类型的对象数据。
Supplier接口被称之为生产型接口,指定接口的泛型是什么类型,那么接口中的get方法就会生产什么类型的数据
*/
public class Demo01Supplier {
//定义一个方法,方法的参数传递Supplier接口,泛型执行String,get方法就会返回一个String
public static String getString(Supplier<String> sup){
return sup.get();
}
public static void main(String[] args) {
//调用getString方法,方法的参数Supplier是一个函数式接口,所以可以传递Lambda表达式
String s = getString(()->{
//生产一个字符串,并返回
return "胡歌";
});
System.out.println(s);
//优化Lambda表达式
String s2 = getString(()->"胡歌");
System.out.println(s2);
}
}
接口的使用举例:
/*
练习:求数组元素最大值
使用Supplier接口作为方法参数类型,通过Lambda表达式求出int数组中的最大值。
提示:接口的泛型请使用java.lang.Integer类。
*/
public class Demo02Test {
//定义一个方法,用于获取int类型数组中元素的最大值,方法的参数传递Supplier接口,泛型使用Integer
public static int getMax(Supplier<Integer> sup){
return sup.get();
}
public static void main(String[] args) {
//定义一个int类型的数组,并赋值
int[] arr = {100,0,-50,880,99,33,-30};
//调用getMax方法,方法的参数Supplier是一个函数式接口,所以可以传递Lambda表达式
int maxValue = getMax(()->{
//获取数组的最大值,并返回
//定义一个变量,把数组中的第一个元素赋值给该变量,记录数组中元素的最大值
int max = arr[0];
//遍历数组,获取数组中的其他元素
for (int i : arr) {
//使用其他的元素和最大值比较
if(i>max){
//如果i大于max,则替换max作为最大值
max = i;
}
}
//返回最大值
return max;
});
System.out.println("数组中元素的最大值是:"+maxValue);
}
}
java.util.function.Consumer
接口则正好与Supplier接口相反,它不是生产一个数据,而是消费一个数据, 其数据类型由泛型决定。 (Consumer 接口可称为消费者接口,即将传递的参数进行使用)
Consumer
接口则提供一个抽象方法: void accept(T t)
,意为消费一个指定泛型的数据
/*
java.util.function.Consumer接口则正好与Supplier接口相反,
它不是生产一个数据,而是消费一个数据,其数据类型由泛型决定。
Consumer接口中包含抽象方法void accept(T t),意为消费一个指定泛型的数据。
Consumer接口是一个消费型接口,泛型执行什么类型,就可以使用accept方法消费什么类型的数据
至于具体怎么消费(使用),需要自定义(输出,计算....)
*/
public class Demo01Consumer {
/*
定义一个方法
方法的参数传递一个字符串的姓名
方法的参数传递Consumer接口,泛型使用String
可以使用Consumer接口消费字符串的姓名
*/
public static void method(String name, Consumer<String> con){
con.accept(name);
}
public static void main(String[] args) {
//调用method方法,传递字符串姓名,方法的另一个参数是Consumer接口,是一个函数式接口,所以可以传递Lambda表达式
method("赵丽颖",(String name)->{
//对传递的字符串进行消费
//消费方式:直接输出字符串
//System.out.println(name);
//消费方式:把字符串进行反转输出
String reName = new StringBuffer(name).reverse().toString();
System.out.println(reName);
});
}
}
默认方法:andThen
如果一个方法的参数和返回值全都是 Consumer 类型,那么就可以实现效果:消费数据的时候,首先做一个操作, 然后再做一个操作,实现组合。而这个方法就是 Consumer 接口中的default方法 andThen 。下面是JDK的源代码:
default Consumer<T> andThen(Consumer<? super T> after){
Objects.requireNonNull(after);
return (T t) ‐> { accept(t); after.accept(t); };
}
备注: java.util.Objects 的 requireNonNull 静态方法将会在参数为null时主动抛出 NullPointerException 异常。这省去了重复编写if语句和抛出空指针异常的麻烦。
/*
Consumer接口的默认方法andThen
作用:需要两个Consumer接口,可以把两个Consumer接口组合到一起,在对数据进行消费
例如:
Consumer con1
Consumer con2
String s = "hello";
con1.accept(s);
con2.accept(s);
连接两个Consumer接口 再进行消费
con1.andThen(con2).accept(s); 谁写前边谁先消费
*/
public class Demo02AndThen {
//定义一个方法,方法的参数传递一个字符串和两个Consumer接口,Consumer接口的泛型使用字符串
public static void method(String s, Consumer<String> con1 ,Consumer<String> con2){
//con1.accept(s);
//con2.accept(s);
//使用andThen方法,把两个Consumer接口连接到一起,在消费数据
con1.andThen(con2).accept(s);//con1连接con2,先执行con1消费数据,在执行con2消费数据
}
public static void main(String[] args) {
//调用method方法,传递一个字符串,两个Lambda表达式
method("Hello",
(t)->{
//消费方式:把字符串转换为大写输出
System.out.println(t.toUpperCase());
},
(t)->{
//消费方式:把字符串转换为小写输出
System.out.println(t.toLowerCase());
});
}
}
Consumer接口的使用:
public class DemoConsumer {
public static void main(String[] args) {
String[] array = { "迪丽热巴,女", "古力娜扎,女", "马尔扎哈,男" };
printInfo(s ‐> System.out.print("姓名:" + s.split(",")[0]),
s ‐> System.out.println("。性别:" + s.split(",")[1] + "。"),
array);
}
private static void printInfo(Consumer<String> one, Consumer<String> two, String[] array) {
for (String info : array) {
one.andThen(two).accept(info); // 姓名:迪丽热巴。性别:女。
}
}
}
有时候我们需要对某种类型的数据进行判断,从而得到一个boolean值结果。这时可以使用 java.util.function.Predicate 接口。
抽象方法:test
Predicate 接口中包含一个抽象方法: boolean test(T t) 。用于条件判断的场景:
/*
java.util.function.Predicate接口
作用:对某种数据类型的数据进行判断,结果返回一个boolean值
Predicate接口中包含一个抽象方法:
boolean test(T t):用来对指定数据类型数据进行判断的方法
结果:
符合条件,返回true
不符合条件,返回false
*/
public class Demo01Predicate {
/*
定义一个方法
参数传递一个String类型的字符串
传递一个Predicate接口,泛型使用String
使用Predicate中的方法test对字符串进行判断,并把判断的结果返回
*/
public static boolean checkString(String s, Predicate<String> pre){
return pre.test(s);
}
public static void main(String[] args) {
//定义一个字符串
String s = "abcdef";
//调用checkString方法对字符串进行校验,参数传递字符串和Lambda表达式
/*boolean b = checkString(s,(String str)->{
//对参数传递的字符串进行判断,判断字符串的长度是否大于5,并把判断的结果返回
return str.length()>5;
});*/
//优化Lambda表达式
boolean b = checkString(s,str->str.length()>5);
System.out.println(b);
}
}
默认方法:and
既然是条件判断,就会存在与、或、非三种常见的逻辑关系。其中将两个 Predicate 条件使用“与”逻辑连接起来实 现“并且”的效果时,可以使用default方法 and 。其JDK源码为:
default Predicate<T> and(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) ‐> test(t) && other.test(t);
}
/*
逻辑表达式:可以连接多个判断的条件
&&:与运算符,有false则false
||:或运算符,有true则true
!:非(取反)运算符,非真则假,非假则真
需求:判断一个字符串,有两个判断的条件
1.判断字符串的长度是否大于5
2.判断字符串中是否包含a
两个条件必须同时满足,我们就可以使用&&运算符连接两个条件
Predicate接口中有一个方法and,表示并且关系,也可以用于连接两个判断条件
default Predicate and(Predicate super T> other) {
Objects.requireNonNull(other);
return (t) -> this.test(t) && other.test(t);
}
方法内部的两个判断条件,也是使用&&运算符连接起来的
*/
public class Demo02Predicate_and {
/*
定义一个方法,方法的参数,传递一个字符串
传递两个Predicate接口
一个用于判断字符串的长度是否大于5
一个用于判断字符串中是否包含a
两个条件必须同时满足
*/
public static boolean checkString(String s, Predicate<String> pre1,Predicate<String> pre2){
//return pre1.test(s) && pre2.test(s);
return pre1.and(pre2).test(s);//等价于return pre1.test(s) && pre2.test(s);
}
public static void main(String[] args) {
//定义一个字符串
String s = "abcdef";
//调用checkString方法,参数传递字符串和两个Lambda表达式
boolean b = checkString(s,(String str)->{
//判断字符串的长度是否大于5
return str.length()>5;
},(String str)->{
//判断字符串中是否包含a
return str.contains("a");
});
System.out.println(b);
}
}
默认方法:or
与 and 的“与”类似,默认方法 or 实现逻辑关系中的“或”。JDK源码为:
default Predicate<T> or(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) ‐> test(t) || other.test(t);
}
/*
需求:判断一个字符串,有两个判断的条件
1.判断字符串的长度是否大于5
2.判断字符串中是否包含a
满足一个条件即可,我们就可以使用||运算符连接两个条件
Predicate接口中有一个方法or,表示或者关系,也可以用于连接两个判断条件
default Predicate or(Predicate super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) || other.test(t);
}
方法内部的两个判断条件,也是使用||运算符连接起来的
*/
public class Demo03Predicate_or {
/*
定义一个方法,方法的参数,传递一个字符串
传递两个Predicate接口
一个用于判断字符串的长度是否大于5
一个用于判断字符串中是否包含a
满足一个条件即可
*/
public static boolean checkString(String s, Predicate<String> pre1, Predicate<String> pre2){
//return pre1.test(s) || pre2.test(s);
return pre1.or(pre2).test(s);//等价于return pre1.test(s) || pre2.test(s);
}
public static void main(String[] args) {
//定义一个字符串
String s = "bc";
//调用checkString方法,参数传递字符串和两个Lambda表达式
boolean b = checkString(s,(String str)->{
//判断字符串的长度是否大于5
return str.length()>5;
},(String str)->{
//判断字符串中是否包含a
return str.contains("a");
});
System.out.println(b);
}
}
默认方法:negate
“与”、“或”已经了解了,剩下的“非”(取反)也会简单。默认方法 negate 的JDK源代码为:
default Predicate<T> negate(){
return (t) ‐> !test(t);
}
从实现中很容易看出,它是执行了test方法之后,对结果boolean值进行“!”取反而已。一定要在 test 方法调用之前 调用 negate 方法,正如 and 和 or 方法一样:
/*
需求:判断一个字符串长度是否大于5
如果字符串的长度大于5,那返回false
如果字符串的长度不大于5,那么返回true
所以我们可以使用取反符号!对判断的结果进行取反
Predicate接口中有一个方法negate,也表示取反的意思
default Predicate negate() {
return (t) -> !test(t);
}
*/
public class Demo04Predicate_negate {
/*
定义一个方法,方法的参数,传递一个字符串
使用Predicate接口判断字符串的长度是否大于5
*/
public static boolean checkString(String s, Predicate<String> pre){
//return !pre.test(s);
return pre.negate().test(s);//等效于return !pre.test(s);
}
public static void main(String[] args) {
//定义一个字符串
String s = "abc";
//调用checkString方法,参数传递字符串和Lambda表达式
boolean b = checkString(s,(String str)->{
//判断字符串的长度是否大于5,并返回结果
return str.length()>5;
});
System.out.println(b);
}
}
综合使用:
/*
练习:集合信息筛选
数组当中有多条“姓名+性别”的信息如下,
String[] array = { "迪丽热巴,女", "古力娜扎,女", "马尔扎哈,男", "赵丽颖,女" };
请通过Predicate接口的拼装将符合要求的字符串筛选到集合ArrayList中,
需要同时满足两个条件:
1. 必须为女生;
2. 姓名为4个字。
分析:
1.有两个判断条件,所以需要使用两个Predicate接口,对条件进行判断
2.必须同时满足两个条件,所以可以使用and方法连接两个判断条件
*/
public class Demo05Test {
/*
定义一个方法
方法的参数传递一个包含人员信息的数组
传递两个Predicate接口,用于对数组中的信息进行过滤
把满足条件的信息存到ArrayList集合中并返回
*/
public static ArrayList<String> filter(String[] arr,Predicate<String> pre1,Predicate<String> pre2){
//定义一个ArrayList集合,存储过滤之后的信息
ArrayList<String> list = new ArrayList<>();
//遍历数组,获取数组中的每一条信息
for (String s : arr) {
//使用Predicate接口中的方法test对获取到的字符串进行判断
boolean b = pre1.and(pre2).test(s);
//对得到的布尔值进行判断
if(b){
//条件成立,两个条件都满足,把信息存储到ArrayList集合中
list.add(s);
}
}
//把集合返回
return list;
}
public static void main(String[] args) {
//定义一个储存字符串的数组
String[] array = { "迪丽热巴,女", "古力娜扎,女", "马尔扎哈,男", "赵丽颖,女" };
//调用filter方法,传递字符串数组和两个Lambda表达式
ArrayList<String> list = filter(array,(String s)->{
//获取字符串中的性别,判断是否为女
return s.split(",")[1].equals("女");
},(String s)->{
//获取字符串中的姓名,判断长度是否为4个字符
return s.split(",")[0].length()==4;
});
//遍历集合
for (String s : list) {
System.out.println(s);
}
}
}
java.util.function.Function
接口用来根据一个类型的数据得到另一个类型的数据,前者称为前置条件, 后者称为后置条件。
抽象方法:apply
Function
接口中主要的抽象方法为: R apply(T t)
,根据类型T的参数获取类型R的结果。
使用的场景例如:将 String
类型转换为 Integer
类型。
/*
java.util.function.Function接口用来根据一个类型的数据得到另一个类型的数据,
前者称为前置条件,后者称为后置条件。
Function接口中最主要的抽象方法为:R apply(T t),根据类型T的参数获取类型R的结果。
使用的场景例如:将String类型转换为Integer类型。
*/
public class Demo01Function {
/*
定义一个方法
方法的参数传递一个字符串类型的整数
方法的参数传递一个Function接口,泛型使用
使用Function接口中的方法apply,把字符串类型的整数,转换为Integer类型的整数
*/
public static void change(String s, Function<String,Integer> fun){
//Integer in = fun.apply(s);
int in = fun.apply(s);//自动拆箱 Integer->int
System.out.println(in);
}
public static void main(String[] args) {
//定义一个字符串类型的整数
String s = "1234";
//调用change方法,传递字符串类型的整数,和Lambda表达式
change(s,(String str)->{
//把字符串类型的整数,转换为Integer类型的整数返回
return Integer.parseInt(str);
});
//优化Lambda
change(s,str->Integer.parseInt(str));
}
}
默认方法:andThen
Function 接口中有一个默认的 andThen 方法,用来进行组合操作。JDK源代码如:
default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
Objects.requireNonNull(after);
return (T t) ‐> after.apply(apply(t));
}
/*
Function接口中的默认方法andThen:用来进行组合操作
需求:
把String类型的"123",转换为Inteter类型,把转换后的结果加10
把增加之后的Integer类型的数据,转换为String类型
分析:
转换了两次
第一次是把String类型转换为了Integer类型
所以我们可以使用Function fun1
Integer i = fun1.apply("123")+10;
第二次是把Integer类型转换为String类型
所以我们可以使用Function fun2
String s = fun2.apply(i);
我们可以使用andThen方法,把两次转换组合在一起使用
String s = fun1.andThen(fun2).apply("123");
fun1先调用apply方法,把字符串转换为Integer
fun2再调用apply方法,把Integer转换为字符串
*/
public class Demo02Function_andThen {
/*
定义一个方法
参数串一个字符串类型的整数
参数再传递两个Function接口
一个泛型使用Function
一个泛型使用Function
*/
public static void change(String s, Function<String,Integer> fun1,Function<Integer,String> fun2){
String ss = fun1.andThen(fun2).apply(s);
System.out.println(ss);
}
public static void main(String[] args) {
//定义一个字符串类型的整数
String s = "123";
//调用change方法,传递字符串和两个Lambda表达式
change(s,(String str)->{
//把字符串转换为整数+10
return Integer.parseInt(str)+10;
},(Integer i)->{
//把整数转换为字符串
return i+"";
});
//优化Lambda表达式
change(s,str->Integer.parseInt(str)+10,i->i+"");
}
}
综合使用
/*
练习:自定义函数模型拼接
题目
请使用Function进行函数模型的拼接,按照顺序需要执行的多个函数操作为:
String str = "赵丽颖,20";
分析:
1. 将字符串截取数字年龄部分,得到字符串;
Function "赵丽颖,20"->"20"
2. 将上一步的字符串转换成为int类型的数字;
Function "20"->20
3. 将上一步的int数字累加100,得到结果int数字。
Function 20->120
*/
public class Demo03Test {
/*
定义一个方法
参数传递包含姓名和年龄的字符串
参数再传递3个Function接口用于类型转换
*/
public static int change(String s, Function<String,String> fun1,
Function<String,Integer> fun2,Function<Integer,Integer> fun3){
//使用andThen方法把三个转换组合到一起
return fun1.andThen(fun2).andThen(fun3).apply(s);
}
public static void main(String[] args) {
//定义一个字符串
String str = "赵丽颖,20";
//调用change方法,参数传递字符串和3个Lambda表达式
int num = change(str,(String s)->{
//"赵丽颖,20"->"20"
return s.split(",")[1];
},(String s)->{
//"20"->20
return Integer.parseInt(s);
},(Integer i)->{
//20->120
return i+100;
});
System.out.println(num);
}
}
JDK提供了大量常用的函数式接口以丰富Lambda的典型使用场景,它们主要在 java.util.function 包中被提供。 (这些接口在java的steam流中使用)
java.util.function.Supplier
接口仅包含一个无参的方法: T get()
。用来获取一个泛型参数指定类型的对 象数据。
由于这是一个函数式接口,这也就意味着对应的Lambda表达式需要“对外提供”一个符合泛型类型的对象数据。(Supplier接口也称为生产者接口,即提供(生产)对象 并返回)
/*
常用的函数式接口
java.util.function.Supplier接口仅包含一个无参的方法:T get()。用来获取一个泛型参数指定类型的对象数据。
Supplier接口被称之为生产型接口,指定接口的泛型是什么类型,那么接口中的get方法就会生产什么类型的数据
*/
public class Demo01Supplier {
//定义一个方法,方法的参数传递Supplier接口,泛型执行String,get方法就会返回一个String
public static String getString(Supplier<String> sup){
return sup.get();
}
public static void main(String[] args) {
//调用getString方法,方法的参数Supplier是一个函数式接口,所以可以传递Lambda表达式
String s = getString(()->{
//生产一个字符串,并返回
return "胡歌";
});
System.out.println(s);
//优化Lambda表达式
String s2 = getString(()->"胡歌");
System.out.println(s2);
}
}
接口的使用举例:
/*
练习:求数组元素最大值
使用Supplier接口作为方法参数类型,通过Lambda表达式求出int数组中的最大值。
提示:接口的泛型请使用java.lang.Integer类。
*/
public class Demo02Test {
//定义一个方法,用于获取int类型数组中元素的最大值,方法的参数传递Supplier接口,泛型使用Integer
public static int getMax(Supplier<Integer> sup){
return sup.get();
}
public static void main(String[] args) {
//定义一个int类型的数组,并赋值
int[] arr = {100,0,-50,880,99,33,-30};
//调用getMax方法,方法的参数Supplier是一个函数式接口,所以可以传递Lambda表达式
int maxValue = getMax(()->{
//获取数组的最大值,并返回
//定义一个变量,把数组中的第一个元素赋值给该变量,记录数组中元素的最大值
int max = arr[0];
//遍历数组,获取数组中的其他元素
for (int i : arr) {
//使用其他的元素和最大值比较
if(i>max){
//如果i大于max,则替换max作为最大值
max = i;
}
}
//返回最大值
return max;
});
System.out.println("数组中元素的最大值是:"+maxValue);
}
}
java.util.function.Consumer
接口则正好与Supplier接口相反,它不是生产一个数据,而是消费一个数据, 其数据类型由泛型决定。 (Consumer 接口可称为消费者接口,即将传递的参数进行使用)
Consumer
接口则提供一个抽象方法: void accept(T t)
,意为消费一个指定泛型的数据
/*
java.util.function.Consumer接口则正好与Supplier接口相反,
它不是生产一个数据,而是消费一个数据,其数据类型由泛型决定。
Consumer接口中包含抽象方法void accept(T t),意为消费一个指定泛型的数据。
Consumer接口是一个消费型接口,泛型执行什么类型,就可以使用accept方法消费什么类型的数据
至于具体怎么消费(使用),需要自定义(输出,计算....)
*/
public class Demo01Consumer {
/*
定义一个方法
方法的参数传递一个字符串的姓名
方法的参数传递Consumer接口,泛型使用String
可以使用Consumer接口消费字符串的姓名
*/
public static void method(String name, Consumer<String> con){
con.accept(name);
}
public static void main(String[] args) {
//调用method方法,传递字符串姓名,方法的另一个参数是Consumer接口,是一个函数式接口,所以可以传递Lambda表达式
method("赵丽颖",(String name)->{
//对传递的字符串进行消费
//消费方式:直接输出字符串
//System.out.println(name);
//消费方式:把字符串进行反转输出
String reName = new StringBuffer(name).reverse().toString();
System.out.println(reName);
});
}
}
默认方法:andThen
如果一个方法的参数和返回值全都是 Consumer 类型,那么就可以实现效果:消费数据的时候,首先做一个操作, 然后再做一个操作,实现组合。而这个方法就是 Consumer 接口中的default方法 andThen 。下面是JDK的源代码:
default Consumer<T> andThen(Consumer<? super T> after){
Objects.requireNonNull(after);
return (T t) ‐> { accept(t); after.accept(t); };
}
备注: java.util.Objects 的 requireNonNull 静态方法将会在参数为null时主动抛出 NullPointerException 异常。这省去了重复编写if语句和抛出空指针异常的麻烦。
/*
Consumer接口的默认方法andThen
作用:需要两个Consumer接口,可以把两个Consumer接口组合到一起,在对数据进行消费
例如:
Consumer con1
Consumer con2
String s = "hello";
con1.accept(s);
con2.accept(s);
连接两个Consumer接口 再进行消费
con1.andThen(con2).accept(s); 谁写前边谁先消费
*/
public class Demo02AndThen {
//定义一个方法,方法的参数传递一个字符串和两个Consumer接口,Consumer接口的泛型使用字符串
public static void method(String s, Consumer<String> con1 ,Consumer<String> con2){
//con1.accept(s);
//con2.accept(s);
//使用andThen方法,把两个Consumer接口连接到一起,在消费数据
con1.andThen(con2).accept(s);//con1连接con2,先执行con1消费数据,在执行con2消费数据
}
public static void main(String[] args) {
//调用method方法,传递一个字符串,两个Lambda表达式
method("Hello",
(t)->{
//消费方式:把字符串转换为大写输出
System.out.println(t.toUpperCase());
},
(t)->{
//消费方式:把字符串转换为小写输出
System.out.println(t.toLowerCase());
});
}
}
Consumer接口的使用:
public class DemoConsumer {
public static void main(String[] args) {
String[] array = { "迪丽热巴,女", "古力娜扎,女", "马尔扎哈,男" };
printInfo(s ‐> System.out.print("姓名:" + s.split(",")[0]),
s ‐> System.out.println("。性别:" + s.split(",")[1] + "。"),
array);
}
private static void printInfo(Consumer<String> one, Consumer<String> two, String[] array) {
for (String info : array) {
one.andThen(two).accept(info); // 姓名:迪丽热巴。性别:女。
}
}
}
有时候我们需要对某种类型的数据进行判断,从而得到一个boolean值结果。这时可以使用 java.util.function.Predicate 接口。
抽象方法:test
Predicate 接口中包含一个抽象方法: boolean test(T t) 。用于条件判断的场景:
/*
java.util.function.Predicate接口
作用:对某种数据类型的数据进行判断,结果返回一个boolean值
Predicate接口中包含一个抽象方法:
boolean test(T t):用来对指定数据类型数据进行判断的方法
结果:
符合条件,返回true
不符合条件,返回false
*/
public class Demo01Predicate {
/*
定义一个方法
参数传递一个String类型的字符串
传递一个Predicate接口,泛型使用String
使用Predicate中的方法test对字符串进行判断,并把判断的结果返回
*/
public static boolean checkString(String s, Predicate<String> pre){
return pre.test(s);
}
public static void main(String[] args) {
//定义一个字符串
String s = "abcdef";
//调用checkString方法对字符串进行校验,参数传递字符串和Lambda表达式
/*boolean b = checkString(s,(String str)->{
//对参数传递的字符串进行判断,判断字符串的长度是否大于5,并把判断的结果返回
return str.length()>5;
});*/
//优化Lambda表达式
boolean b = checkString(s,str->str.length()>5);
System.out.println(b);
}
}
默认方法:and
既然是条件判断,就会存在与、或、非三种常见的逻辑关系。其中将两个 Predicate 条件使用“与”逻辑连接起来实 现“并且”的效果时,可以使用default方法 and 。其JDK源码为:
default Predicate<T> and(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) ‐> test(t) && other.test(t);
}
/*
逻辑表达式:可以连接多个判断的条件
&&:与运算符,有false则false
||:或运算符,有true则true
!:非(取反)运算符,非真则假,非假则真
需求:判断一个字符串,有两个判断的条件
1.判断字符串的长度是否大于5
2.判断字符串中是否包含a
两个条件必须同时满足,我们就可以使用&&运算符连接两个条件
Predicate接口中有一个方法and,表示并且关系,也可以用于连接两个判断条件
default Predicate and(Predicate super T> other) {
Objects.requireNonNull(other);
return (t) -> this.test(t) && other.test(t);
}
方法内部的两个判断条件,也是使用&&运算符连接起来的
*/
public class Demo02Predicate_and {
/*
定义一个方法,方法的参数,传递一个字符串
传递两个Predicate接口
一个用于判断字符串的长度是否大于5
一个用于判断字符串中是否包含a
两个条件必须同时满足
*/
public static boolean checkString(String s, Predicate<String> pre1,Predicate<String> pre2){
//return pre1.test(s) && pre2.test(s);
return pre1.and(pre2).test(s);//等价于return pre1.test(s) && pre2.test(s);
}
public static void main(String[] args) {
//定义一个字符串
String s = "abcdef";
//调用checkString方法,参数传递字符串和两个Lambda表达式
boolean b = checkString(s,(String str)->{
//判断字符串的长度是否大于5
return str.length()>5;
},(String str)->{
//判断字符串中是否包含a
return str.contains("a");
});
System.out.println(b);
}
}
默认方法:or
与 and 的“与”类似,默认方法 or 实现逻辑关系中的“或”。JDK源码为:
default Predicate<T> or(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) ‐> test(t) || other.test(t);
}
/*
需求:判断一个字符串,有两个判断的条件
1.判断字符串的长度是否大于5
2.判断字符串中是否包含a
满足一个条件即可,我们就可以使用||运算符连接两个条件
Predicate接口中有一个方法or,表示或者关系,也可以用于连接两个判断条件
default Predicate or(Predicate super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) || other.test(t);
}
方法内部的两个判断条件,也是使用||运算符连接起来的
*/
public class Demo03Predicate_or {
/*
定义一个方法,方法的参数,传递一个字符串
传递两个Predicate接口
一个用于判断字符串的长度是否大于5
一个用于判断字符串中是否包含a
满足一个条件即可
*/
public static boolean checkString(String s, Predicate<String> pre1, Predicate<String> pre2){
//return pre1.test(s) || pre2.test(s);
return pre1.or(pre2).test(s);//等价于return pre1.test(s) || pre2.test(s);
}
public static void main(String[] args) {
//定义一个字符串
String s = "bc";
//调用checkString方法,参数传递字符串和两个Lambda表达式
boolean b = checkString(s,(String str)->{
//判断字符串的长度是否大于5
return str.length()>5;
},(String str)->{
//判断字符串中是否包含a
return str.contains("a");
});
System.out.println(b);
}
}
默认方法:negate
“与”、“或”已经了解了,剩下的“非”(取反)也会简单。默认方法 negate 的JDK源代码为:
default Predicate<T> negate(){
return (t) ‐> !test(t);
}
从实现中很容易看出,它是执行了test方法之后,对结果boolean值进行“!”取反而已。一定要在 test 方法调用之前 调用 negate 方法,正如 and 和 or 方法一样:
/*
需求:判断一个字符串长度是否大于5
如果字符串的长度大于5,那返回false
如果字符串的长度不大于5,那么返回true
所以我们可以使用取反符号!对判断的结果进行取反
Predicate接口中有一个方法negate,也表示取反的意思
default Predicate negate() {
return (t) -> !test(t);
}
*/
public class Demo04Predicate_negate {
/*
定义一个方法,方法的参数,传递一个字符串
使用Predicate接口判断字符串的长度是否大于5
*/
public static boolean checkString(String s, Predicate<String> pre){
//return !pre.test(s);
return pre.negate().test(s);//等效于return !pre.test(s);
}
public static void main(String[] args) {
//定义一个字符串
String s = "abc";
//调用checkString方法,参数传递字符串和Lambda表达式
boolean b = checkString(s,(String str)->{
//判断字符串的长度是否大于5,并返回结果
return str.length()>5;
});
System.out.println(b);
}
}
综合使用:
/*
练习:集合信息筛选
数组当中有多条“姓名+性别”的信息如下,
String[] array = { "迪丽热巴,女", "古力娜扎,女", "马尔扎哈,男", "赵丽颖,女" };
请通过Predicate接口的拼装将符合要求的字符串筛选到集合ArrayList中,
需要同时满足两个条件:
1. 必须为女生;
2. 姓名为4个字。
分析:
1.有两个判断条件,所以需要使用两个Predicate接口,对条件进行判断
2.必须同时满足两个条件,所以可以使用and方法连接两个判断条件
*/
public class Demo05Test {
/*
定义一个方法
方法的参数传递一个包含人员信息的数组
传递两个Predicate接口,用于对数组中的信息进行过滤
把满足条件的信息存到ArrayList集合中并返回
*/
public static ArrayList<String> filter(String[] arr,Predicate<String> pre1,Predicate<String> pre2){
//定义一个ArrayList集合,存储过滤之后的信息
ArrayList<String> list = new ArrayList<>();
//遍历数组,获取数组中的每一条信息
for (String s : arr) {
//使用Predicate接口中的方法test对获取到的字符串进行判断
boolean b = pre1.and(pre2).test(s);
//对得到的布尔值进行判断
if(b){
//条件成立,两个条件都满足,把信息存储到ArrayList集合中
list.add(s);
}
}
//把集合返回
return list;
}
public static void main(String[] args) {
//定义一个储存字符串的数组
String[] array = { "迪丽热巴,女", "古力娜扎,女", "马尔扎哈,男", "赵丽颖,女" };
//调用filter方法,传递字符串数组和两个Lambda表达式
ArrayList<String> list = filter(array,(String s)->{
//获取字符串中的性别,判断是否为女
return s.split(",")[1].equals("女");
},(String s)->{
//获取字符串中的姓名,判断长度是否为4个字符
return s.split(",")[0].length()==4;
});
//遍历集合
for (String s : list) {
System.out.println(s);
}
}
}
java.util.function.Function
接口用来根据一个类型的数据得到另一个类型的数据,前者称为前置条件, 后者称为后置条件。
抽象方法:apply
Function
接口中主要的抽象方法为: R apply(T t)
,根据类型T的参数获取类型R的结果。
使用的场景例如:将 String
类型转换为 Integer
类型。
/*
java.util.function.Function接口用来根据一个类型的数据得到另一个类型的数据,
前者称为前置条件,后者称为后置条件。
Function接口中最主要的抽象方法为:R apply(T t),根据类型T的参数获取类型R的结果。
使用的场景例如:将String类型转换为Integer类型。
*/
public class Demo01Function {
/*
定义一个方法
方法的参数传递一个字符串类型的整数
方法的参数传递一个Function接口,泛型使用
使用Function接口中的方法apply,把字符串类型的整数,转换为Integer类型的整数
*/
public static void change(String s, Function<String,Integer> fun){
//Integer in = fun.apply(s);
int in = fun.apply(s);//自动拆箱 Integer->int
System.out.println(in);
}
public static void main(String[] args) {
//定义一个字符串类型的整数
String s = "1234";
//调用change方法,传递字符串类型的整数,和Lambda表达式
change(s,(String str)->{
//把字符串类型的整数,转换为Integer类型的整数返回
return Integer.parseInt(str);
});
//优化Lambda
change(s,str->Integer.parseInt(str));
}
}
默认方法:andThen
Function 接口中有一个默认的 andThen 方法,用来进行组合操作。JDK源代码如:
default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
Objects.requireNonNull(after);
return (T t) ‐> after.apply(apply(t));
}
/*
Function接口中的默认方法andThen:用来进行组合操作
需求:
把String类型的"123",转换为Inteter类型,把转换后的结果加10
把增加之后的Integer类型的数据,转换为String类型
分析:
转换了两次
第一次是把String类型转换为了Integer类型
所以我们可以使用Function fun1
Integer i = fun1.apply("123")+10;
第二次是把Integer类型转换为String类型
所以我们可以使用Function fun2
String s = fun2.apply(i);
我们可以使用andThen方法,把两次转换组合在一起使用
String s = fun1.andThen(fun2).apply("123");
fun1先调用apply方法,把字符串转换为Integer
fun2再调用apply方法,把Integer转换为字符串
*/
public class Demo02Function_andThen {
/*
定义一个方法
参数串一个字符串类型的整数
参数再传递两个Function接口
一个泛型使用Function
一个泛型使用Function
*/
public static void change(String s, Function<String,Integer> fun1,Function<Integer,String> fun2){
String ss = fun1.andThen(fun2).apply(s);
System.out.println(ss);
}
public static void main(String[] args) {
//定义一个字符串类型的整数
String s = "123";
//调用change方法,传递字符串和两个Lambda表达式
change(s,(String str)->{
//把字符串转换为整数+10
return Integer.parseInt(str)+10;
},(Integer i)->{
//把整数转换为字符串
return i+"";
});
//优化Lambda表达式
change(s,str->Integer.parseInt(str)+10,i->i+"");
}
}
综合使用
/*
练习:自定义函数模型拼接
题目
请使用Function进行函数模型的拼接,按照顺序需要执行的多个函数操作为:
String str = "赵丽颖,20";
分析:
1. 将字符串截取数字年龄部分,得到字符串;
Function "赵丽颖,20"->"20"
2. 将上一步的字符串转换成为int类型的数字;
Function "20"->20
3. 将上一步的int数字累加100,得到结果int数字。
Function 20->120
*/
public class Demo03Test {
/*
定义一个方法
参数传递包含姓名和年龄的字符串
参数再传递3个Function接口用于类型转换
*/
public static int change(String s, Function<String,String> fun1,
Function<String,Integer> fun2,Function<Integer,Integer> fun3){
//使用andThen方法把三个转换组合到一起
return fun1.andThen(fun2).andThen(fun3).apply(s);
}
public static void main(String[] args) {
//定义一个字符串
String str = "赵丽颖,20";
//调用change方法,参数传递字符串和3个Lambda表达式
int num = change(str,(String s)->{
//"赵丽颖,20"->"20"
return s.split(",")[1];
},(String s)->{
//"20"->20
return Integer.parseInt(s);
},(Integer i)->{
//20->120
return i+100;
});
System.out.println(num);
}
}
在Java 8中,得益于Lambda所带 来的函数式编程,引入了一个全新的Stream概念,用于解决已有集合类库既有的弊端。
几乎所有的集合(如 Collection 接口或 Map 接口等)都支持直接或间接的遍历操作。而当我们需要对集合中的元 素进行操作的时候,除了必需的添加、删除、获取外,典型的就是集合遍历。如下
/*
使用传统的方式,遍历集合,对集合中的数据进行过滤
*/
public class Demo01List {
public static void main(String[] args) {
//创建一个List集合,存储姓名
List<String> list = new ArrayList<>();
list.add("张无忌");
list.add("周芷若");
list.add("赵敏");
list.add("张强");
list.add("张三丰");
//对list集合中的元素进行过滤,只要以张开头的元素,存储到一个新的集合中
List<String> listA = new ArrayList<>();
for(String s : list){
if(s.startsWith("张")){
listA.add(s);
}
}
//对listA集合进行过滤,只要姓名长度为3的人,存储到一个新集合中
List<String> listB = new ArrayList<>();
for (String s : listA) {
if(s.length()==3){
listB.add(s);
}
}
//遍历listB集合
for (String s : listB) {
System.out.println(s);
}
}
}
循环遍历的弊端
Java 8的Lambda让我们可以更加专注于做什么(What),而不是怎么(How),这点此前已经结合内部类进行 了对比说明。现在,我们仔细体会一下上例代码,可以发现:
为什么使用循环?因为要进行遍历。但循环是遍历的唯一方式吗?遍历是指每一个元素逐一进行处理,而并不是从 第一个到最后一个顺次处理的循环。前者是目的,后者是方式。
试想一下,如果希望对集合中的元素进行筛选过滤:
上面这段代码中含有三个循环,每一个作用不同:
每当我们需要对集合中的元素进行操作的时候,总是需要进行循环、循环、再循环。这是理所当然的么?不是。循 环是做事情的方式,而不是目的。另一方面,使用线性循环就意味着只能遍历一次。如果希望再次遍历,只能再使用另一个循环从头开始。
/*
使用Stream流的方式,遍历集合,对集合中的数据进行过滤
Stream流是JDK1.8之后出现的
关注的是做什么,而不是怎么做
*/
public class Demo02Stream {
public static void main(String[] args) {
//创建一个List集合,存储姓名
List<String> list = new ArrayList<>();
list.add("张无忌");
list.add("周芷若");
list.add("赵敏");
list.add("张强");
list.add("张三丰");
//对list集合中的元素进行过滤,只要以张开头的元素,存储到一个新的集合中
//对listA集合进行过滤,只要姓名长度为3的人,存储到一个新集合中
//遍历listB集合
list.stream()
.filter(name->name.startsWith("张"))
.filter(name->name.length()==3)
.forEach(name-> System.out.println(name));
}
}
整体来看,流式思想类似于工厂车间的“生产流水线”。
当需要对多个元素进行操作(特别是多步操作)的时候,考虑到性能及便利性,我们应该首先拼好一个“模型”步骤 方案,然后再按照方案去执行它。
这张图中展示了过滤、映射、跳过、计数等多步操作,这是一种集合元素的处理方案,而方案就是一种“函数模 型”。图中的每一个方框都是一个“流”,调用指定的方法,可以从一个流模型转换为另一个流模型。而右侧的数字 3是终结果。
这里的 filter
、 map
、 skip
都是在对函数模型进行操作,集合元素并没有真正被处理。只有当终结方法 count
执行的时候,整个模型才会按照指定策略执行操作。而这得益于Lambda的延迟执行特性。
备注:“Stream流”其实是一个集合元素的函数模型,它并不是集合,也不是数据结构,其本身并不存储任何 元素(或其地址值)。
Stream(流)是一个来自数据源的元素队列
和以前的Collection操作不同, Stream操作还有两个基础的特征:
当使用一个流的时候,通常包括三个基本步骤:获取一个数据源(source)→ 数据转换→执行操作获取想要的结 果,每次转换原有 Stream 对象不改变,返回一个新的 Stream 对象(可以有多次转换),这就允许对其操作可以 像链条一样排列,变成一个管道。
java.util.stream.Stream
是Java 8新加入的常用的流接口。(这并不是一个函数式接口。)
获取一个流非常简单,有以下几种常用的方式:
根据Collection获取流 :首先, java.util.Collection 接口中加入了default方法 stream 用来获取流,所以其所有实现类均可获取流。
根据Map获取流 :java.util.Map
接口不是 Collection 的子接口,且其K-V数据结构不符合流元素的单一特征,所以获取对应的流 需要分key、value或entry等情况.
根据数组获取流 : 如果使用的不是集合或映射而是数组,由于数组对象不可能添加默认方法,所以 Stream 接口中提供了静态方法 of ,使用很简单.
备注: of 方法的参数其实是一个可变参数,所以支持数组。
/*
java.util.stream.Stream是Java 8新加入的最常用的流接口。(这并不是一个函数式接口。)
获取一个流非常简单,有以下几种常用的方式:
- 所有的Collection集合都可以通过stream默认方法获取流;
default Stream stream()
- Stream接口的静态方法of可以获取数组对应的流。
static Stream of(T... values)
参数是一个可变参数,那么我们就可以传递一个数组
*/
public class Demo01GetStream {
public static void main(String[] args) {
//把集合转换为Stream流
List<String> list = new ArrayList<>();
Stream<String> stream1 = list.stream();
Set<String> set = new HashSet<>();
Stream<String> stream2 = set.stream();
Map<String,String> map = new HashMap<>();
//获取键,存储到一个Set集合中
Set<String> keySet = map.keySet();
Stream<String> stream3 = keySet.stream();
//获取值,存储到一个Collection集合中
Collection<String> values = map.values();
Stream<String> stream4 = values.stream();
//获取键值对(键与值的映射关系 entrySet)
Set<Map.Entry<String, String>> entries = map.entrySet();
Stream<Map.Entry<String, String>> stream5 = entries.stream();
//把数组转换为Stream流
Stream<Integer> stream6 = Stream.of(1, 2, 3, 4, 5);
//可变参数可以传递数组
Integer[] arr = {1,2,3,4,5};
Stream<Integer> stream7 = Stream.of(arr);
String[] arr2 = {"a","bb","ccc"};
Stream<String> stream8 = Stream.of(arr2);
}
}
流模型的操作很丰富,这里介绍一些常用的API。这些方法可以被分成两种:
Stream
接口自身类型的方法,因此支持链式调用。(除了终结方法外,其余方 法均为延迟方法。)Stream
接口自身类型的方法,因此不再支持类似 StringBuilder
那样的链式调 用。本小节中,终结方法包括 count
和 forEach
方法。具体如下:
逐一处理:forEach :虽然方法名字叫 forEach ,但是与for循环中的“for-each”昵称不同。该方法接收一个 Consumer 接口函数,会将每一个流元素交给该函数进行处理。
/*
Stream流中的常用方法_forEach
void forEach(Consumer super T> action);
该方法接收一个Consumer接口函数,会将每一个流元素交给该函数进行处理。
Consumer接口是一个消费型的函数式接口,可以传递Lambda表达式,消费数据
简单记:
forEach方法,用来遍历流中的数据
是一个终结方法,遍历之后就不能继续调用Stream流中的其他方法
*/
public class Demo02Stream_forEach {
public static void main(String[] args) {
//获取一个Stream流
Stream<String> stream = Stream.of("张三", "李四", "王五", "赵六", "田七");
//使用Stream流中的方法forEach对Stream流中的数据进行遍历
/*stream.forEach((String name)->{
System.out.println(name);
});*/
stream.forEach(name->System.out.println(name));
}
}
过滤:filter :可以通过 filter 方法将一个流转换成另一个子集流。该接口接收一个 Predicate 函数式接口参数(可以是一个Lambda或方法引用)作为筛选条件。
/*
Stream流中的常用方法_filter:用于对Stream流中的数据进行过滤
Stream filter(Predicate super T> predicate);
filter方法的参数Predicate是一个函数式接口,所以可以传递Lambda表达式,对数据进行过滤
Predicate中的抽象方法:
boolean test(T t);
*/
public class Demo03Stream_filter {
public static void main(String[] args) {
//创建一个Stream流
Stream<String> stream = Stream.of("张三丰", "张翠山", "赵敏", "周芷若", "张无忌");
//对Stream流中的元素进行过滤,只要姓张的人
Stream<String> stream2 = stream.filter((String name)->{return name.startsWith("张");});
//遍历stream2流
stream2.forEach(name-> System.out.println(name));
/*
Stream流属于管道流,只能被消费(使用)一次
第一个Stream流调用完毕方法,数据就会流转到下一个Stream上
而这时第一个Stream流已经使用完毕,就会关闭了
所以第一个Stream流就不能再调用方法了
IllegalStateException: stream has already been operated upon or closed
*/
//遍历stream流
stream.forEach(name-> System.out.println(name));
}
}
映射:map :如果需要将流中的元素映射到另一个流中,可以使用 map 方法。该接口需要一个 Function 函数式接口参数,可以将当前流中的T类型数据转换为另一种R类型的流。
/*
Stream流中的常用方法_map:用于类型转换
如果需要将流中的元素映射到另一个流中,可以使用map方法.
Stream map(Function super T, ? extends R> mapper);
该接口需要一个Function函数式接口参数,可以将当前流中的T类型数据转换为另一种R类型的流。
Function中的抽象方法:
R apply(T t);
*/
public class Demo04Stream_map {
public static void main(String[] args) {
//获取一个String类型的Stream流
Stream<String> stream = Stream.of("1", "2", "3", "4");
//使用map方法,把字符串类型的整数,转换(映射)为Integer类型的整数
Stream<Integer> stream2 = stream.map((String s)->{
return Integer.parseInt(s);
});
//遍历Stream2流
stream2.forEach(i-> System.out.println(i));
}
}
统计个数:count :正如旧集合 Collection 当中的 size 方法一样,流提供 count 方法来数一数其中的元素个数。该方法返回一个long值代表元素个数(不再像旧集合那样是int值)。
/*
Stream流中的常用方法_count:用于统计Stream流中元素的个数
long count();
count方法是一个终结方法,返回值是一个long类型的整数
所以不能再继续调用Stream流中的其他方法了
*/
public class Demo05Stream_count {
public static void main(String[] args) {
//获取一个Stream流
ArrayList<Integer> list = new ArrayList<>();
list.add(1);
list.add(2);
list.add(3);
list.add(4);
list.add(5);
list.add(6);
list.add(7);
Stream<Integer> stream = list.stream();
long count = stream.count();
System.out.println(count);//7
}
}
取用前几个:limit :limit 方法可以对流进行截取,只取用前n个。参数是一个long型,如果集合当前长度大于参数则进行截取;否则不进行操作。
/*
Stream流中的常用方法_limit:用于截取流中的元素
limit方法可以对流进行截取,只取用前n个。方法签名:
Stream limit(long maxSize);
参数是一个long型,如果集合当前长度大于参数则进行截取;否则不进行操作
limit方法是一个延迟方法,只是对流中的元素进行截取,返回的是一个新的流,所以可以继续调用Stream流中的其他方法
*/
public class Demo06Stream_limit {
public static void main(String[] args) {
//获取一个Stream流
String[] arr = {"美羊羊","喜洋洋","懒洋洋","灰太狼","红太狼"};
Stream<String> stream = Stream.of(arr);
//使用limit对Stream流中的元素进行截取,只要前3个元素
Stream<String> stream2 = stream.limit(3);
//遍历stream2流
stream2.forEach(name-> System.out.println(name));
}
}
跳过前几个:skip :如果希望跳过前几个元素,可以使用 skip 方法获取一个截取之后的新流;如果流的当前长度大于n,则跳过前n个;否则将会得到一个长度为0的空流。
/*
Stream流中的常用方法_skip:用于跳过元素
如果希望跳过前几个元素,可以使用skip方法获取一个截取之后的新流:
Stream skip(long n);
如果流的当前长度大于n,则跳过前n个;否则将会得到一个长度为0的空流。
*/
public class Demo07Stream_skip {
public static void main(String[] args) {
//获取一个Stream流
String[] arr = {"美羊羊","喜洋洋","懒洋洋","灰太狼","红太狼"};
Stream<String> stream = Stream.of(arr);
//使用skip方法跳过前3个元素
Stream<String> stream2 = stream.skip(3);
//遍历stream2流
stream2.forEach(name-> System.out.println(name));
}
}
组合:concat :如果有两个流,希望合并成为一个流,那么可以使用 Stream 接口的静态方法 concat ;
备注:这是一个静态方法,与 java.lang.String 当中的 concat 方法是不同的。
/*
Stream流中的常用方法_concat:用于把流组合到一起
如果有两个流,希望合并成为一个流,那么可以使用Stream接口的静态方法concat
static Stream concat(Stream extends T> a, Stream extends T> b)
*/
public class Demo08Stream_concat {
public static void main(String[] args) {
//创建一个Stream流
Stream<String> stream1 = Stream.of("张三丰", "张翠山", "赵敏", "周芷若", "张无忌");
//获取一个Stream流
String[] arr = {"美羊羊","喜洋洋","懒洋洋","灰太狼","红太狼"};
Stream<String> stream2 = Stream.of(arr);
//把以上两个流组合为一个流
Stream<String> concat = Stream.concat(stream1, stream2);
//遍历concat流
concat.forEach(name-> System.out.printlnname));
}
}
综合使用
/*
Stream流中的常用方法_concat:用于把流组合到一起
如果有两个流,希望合并成为一个流,那么可以使用Stream接口的静态方法concat
static Stream concat(Stream extends T> a, Stream extends T> b)
*/
public class Demo08Stream_concat {
public static void main(String[] args) {
//创建一个Stream流
Stream<String> stream1 = Stream.of("张三丰", "张翠山", "赵敏", "周芷若", "张无忌");
//获取一个Stream流
String[] arr = {"美羊羊","喜洋洋","懒洋洋","灰太狼","红太狼"};
Stream<String> stream2 = Stream.of(arr);
//把以上两个流组合为一个流
Stream<String> concat = Stream.concat(stream1, stream2);
//遍历concat流
concat.forEach(name-> System.out.println(name));
}
}
/*
练习:集合元素处理(Stream方式)
将上一题当中的传统for循环写法更换为Stream流式处理方式。
两个集合的初始内容不变,Person类的定义也不变。
*/
public class Demo02StreamTest {
public static void main(String[] args) {
//第一支队伍
ArrayList<String> one = new ArrayList<>();
one.add("迪丽热巴");
one.add("宋远桥");
one.add("苏星河");
one.add("石破天");
one.add("石中玉");
one.add("老子");
one.add("庄子");
one.add("洪七公");
//1. 第一个队伍只要名字为3个字的成员姓名;存储到一个新集合中。
//2. 第一个队伍筛选之后只要前3个人;存储到一个新集合中。
Stream<String> oneStream = one.stream().filter(name -> name.length() == 3).limit(3);
//第二支队伍
ArrayList<String> two = new ArrayList<>();
two.add("古力娜扎");
two.add("张无忌");
two.add("赵丽颖");
two.add("张三丰");
two.add("尼古拉斯赵四");
two.add("张天爱");
two.add("张二狗");
//3. 第二个队伍只要姓张的成员姓名;存储到一个新集合中。
//4. 第二个队伍筛选之后不要前2个人;存储到一个新集合中。
Stream<String> twoStream = two.stream().filter(name -> name.startsWith("张")).skip(2);
//5. 将两个队伍合并为一个队伍;存储到一个新集合中。
//6. 根据姓名创建Person对象;存储到一个新集合中。
//7. 打印整个队伍的Person对象信息。
Stream.concat(oneStream,twoStream).map(name->new Person(name)).forEach(p-> System.out.println(p));
}
}