- matlab时域离散信号与系统,时域离散信号和系统的频域分析
远方有城
matlab时域离散信号与系统
信号与系统的分析方法有两种:时域分析方法和频域分析方法。在连续时间信号与系统中,信号一般用连续变量时间t的函数表示,系统用微分方程描述,其频域分析方法是拉普拉斯变换和傅立叶变换。在时域离散信号与系统中,信号用序列表示,其自变量仅取整数,非整数时无定义,系统则用差分方程描述,频域分析方法是Z变换和序列傅立叶变换法。Z变换在离散时间系统中的作用就如同拉普拉斯变换在连续时间系统中的作用一样,它把描述离散
- python 实现euler modified变形欧拉法算法
luthane
python算法开发语言
eulermodified变形欧拉法算法介绍EulerModified(改进)变形欧拉法算法,也被称为欧拉修改法或修正欧拉法(EulerModifiedMethod),是一种用于数值求解微分方程的改进方法。这种方法在传统欧拉法的基础上进行了优化,以减少误差。基本原理欧拉法是一种通过逐步逼近来计算函数值的方法,但在某些情况下,传统的欧拉法可能会引入较大的误差。改进的欧拉法通过使用平均斜率来减小误差。
- 二维非稳态导热微分方程_二维非稳态传热的温度场数值模拟
weixin_39759060
二维非稳态导热微分方程
背景:这是本学期凝固实验课的实验之一。这节课有两个数值模拟实验,第一个是二维常物性的,只有一种介质。而第二个实验是模拟凝固过程,稍微复杂一些。这篇文章是针对第一个实验写的,实验书上是按照显示差分进行的,这里改为隐式差分以便于计算。由于本人不是学CS的,因此代码的质量可能不是很高。简要说明:二维非稳态传热、常物性、第一类边界条件、无内热源、网格的划分计算原理概述直角坐标系内二维导热过程温度场控制微分
- 控制系统与MATLAB的菜鸟教程(二)…
originalsinQ
matlab控制系统设计
为打字方便,以下把MATLAB简称“小麦”周六到鸟!!我爱周六!!泡上一杯茶,继续写这个东东……按上次说的,这篇来个一锅端,内容设涉及到数值计算,操作矩阵,符号运算,求解微分方程,基本的编程语句等。所有例子的运行结果我就不给出答案了,可以自己运行一下,一些代码我在输入的时候难免马虎,望包涵,一些可以自行修改,一些可以提出来,我会尽快修正。一些需要特别注意的问题我用粉红色的四号字标出,大家务必要记住
- 非理工科院校怎么打好数学建模比赛 | 南川笔记
南川笔记
Proposition1非理工科院校最好不要打数学建模比赛。虽说“一次建模,终身受益”,但毕竟数学建模既要数学理论的支撑(不仅仅是大学里的微积分、线性代数和概率论与统计,更多的是基于微积分的常偏微分方程、基于线性代数的运筹学和基于概率论与统计的统计分析内容),还要编程的支撑(不是常规的C语言或者Java程序,也不是这几年很火的Python编程,而是基于数值运算的Matlab和基于统计的R),这在一
- Python求解二阶微分方程的解析解
weixin_30777913
python算法前端
代码:fromsympyimportsymbols,Function,dsolve#定义自变量和因变量x=symbols('x')y=Function('y')(x)#定义微分方程eq=y.diff(x,2)+4*y.diff(x)+3*y-xy=Function('y')#使用dsolve求解微分方程solution=dsolve(eq,y(x))print(solution)结果:Eq(y(x
- Python求解微分方程
@星辰大海@
python开发语言
一、引言微分方程表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。微分方程种类很多,具体分类可参考以下博主的文章:https://blog.csdn.net/air_729/article/details/139411996微分方程的解又分成通解和特解,在工程中大多数微分方程是很难得到通解的,因此出现了数值分析或者计算方法这门学科,通过一次次迭代得到方程的某一个或某几个特解,本文
- 2024国赛数学建模保姆级选题建议,思路教程
灿灿数模分号
数学建模
2024年高教社杯全国大学生数学建模竞赛题目分析,思路模型代码论文持续更新,更新见文末名片A题:“板凳龙”闹元宵难度:中等偏上适合专业:工程力学、机械工程、物理、计算机科学、数学等专业的学生适合解答这一题。特别是有扎实几何建模、力学和动态模拟基础的学生。主要算法和模型:1.几何建模:需要建立空间几何模型,可以用螺旋线方程、空间曲线运动方程来描述舞龙队的位置和速度。2.动力学模拟:可以使用微分方程或
- python数值积分_Python求解数值积分
weixin_39892311
python数值积分
本小节求解下述定积分:$$int_{0.7}^4(cos(2πx)e^{-x}+1.2)mathrm{d}x$$版权声明本文可以在互联网上自由转载,但必须:注明出处(作者:海洋饼干叔叔)并包含指向本页面的链接。本文不可以以纸质出版为目的进行改编、摘抄。数值积分-integrateintegrate模块提供了好几种数值积分的方法,包括常微分方程组(ODE)的数值积分。相关函数列表如下:函数名作用函数
- 2022国赛数学建模A题B题C题资料思路汇总(含有代码可运行)_2022高教社杯数学建模a题代码
2401_84619342
2024年程序员学习python
占个位置吧,开始在本帖实时更新赛题思路代码,先更新下初步的想法和资料持续为更新参考思路,可以自行获取。赛题思路会持续进行思路模型分析,下自行获取。A题初步思路想法:A题跟前几年的国赛题高温防护服有点类似,考察能量转换的一个问题,需要求出具体的解,该题目难度略大,结果较精确,小白选择的时候慎重考虑!根据A题给出的问题,需要用到优化模型进行求解,后期需要数学模型能力比较强的选手,要通过构建偏微分方程,
- 备战2024数学建模国赛(模型二十五):微分方程 优秀案例(一)基于非稳态导热的高温作业专用服装设计
2024年数学建模国赛
备战2024数学建模国赛备战2024数学建模数学建模人工智能备战2024数学建模国赛深度学习数学建模国赛2024
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 偏微分 python_基于Python求解偏微分方程的有限差分法.doc
weixin_39612220
偏微分python
基于Python求解偏微分方程的有限差分法.doc基于Python求解偏微分方程的有限差分法(西安石油大学电子工程学院光电油气测井与检测教育部重点实验室,陕西西安710065)摘要:偏微分方程的求解是很多科学技术问题的关键难点。随着计算机性能的不断提高,数值解法能够解复杂的偏微分方程并将计算结果图形化。相对于昂贵的科学计算软件,Python是一种免费的面向对象、动态的程序设计语言。有限差分法以其概
- 【自动驾驶】控制算法(四)坐标变换与横向误差微分方程
清流君
运动控制自动驾驶人工智能控制算法笔记
写在前面:欢迎光临清流君的博客小天地,这里是我分享技术与心得的温馨角落。个人主页:清流君_CSDN博客,期待与您一同探索移动机器人领域的无限可能。本文系清流君原创之作,荣幸在CSDN首发若您觉得内容有价值,还请评论告知一声,以便更多人受益。转载请注明出处,尊重原创,从我做起。点赞、评论、收藏,三连走一波,让我们一起养成好习惯在这里,您将收获的不只是技术干货,还有思维的火花!系列专栏:【运动控制】系
- 【学习笔记】灰色预测 GM(1,1) 模型 —— Matlab
望月12138
学习笔记matlab
文章目录前言一、灰色预测模型灰色预测适用情况GM(1,1)模型二、示例指数规律检验(原始数据级比检验)级比检验的定义GM(1,1)模型的级比检验模型求解求解微分方程模型评价(检验模型对原始数据的拟合程度)残差检验级比偏差检验三、代码实现----Matlab级比检验代码模型求解代码调用模型求解代码进行预测前言通过模型算法,熟练对Matlab的应用。学习视频链接:https://www.bilibil
- SciPy:基于 NumPy 的算法库和数学工具包,用于数学、科学和工程领域。
Jr_l
#数据科学scipynumpy算法
引言SciPy是一个基于NumPy的开放源码算法库和数学工具包,广泛应用于数学、科学、工程等领域。SciPy扩展了NumPy的功能,提供了更高级的数学算法和函数,使得科学计算更加便捷和高效。SciPy的目标是为用户提供一个全面的科学计算环境,其中涵盖了常见的线性代数、优化、积分、插值、傅里叶变换、信号处理、统计、图像处理、以及ODE(常微分方程)求解等功能。作为NumPy的自然延伸,SciPy主要
- 微分方程求解器电路Simulink仿真
uestc_Venn
matlab嵌入式硬件硬件架构
假设RC振荡电路中的电容电压v_C状态方程如下:给定初始条件v_C(0)=1V,则该方程的数值关系可用如下所示的方块图表示:该方块图可在Simulink内使用元件搭建求解电路,如下图所示:将模型集成为子系统后,输入阶跃信号,通过示波器读出状态电压:稳态则为最终解:
- Python在高等数学和线性代数中的应用
学习不止,掉发不停
数学建模python
Python数学实验与建模学习目录1.SymPy工具库1.1符号运算基础1.2用SymPy做符号函数画图2.高等数学的符号解2.1极限2.2导数2.3级数求和2.4泰勒展开2.5不定积分和定积分2.6代数方程2.7微分方程3.高等数学问题的数值解3.1一重积分3.1.1梯形计算3.1.2辛普森计算3.2多重积分3.3非线性方程数值解3.3.1二分法求根3.3.2牛顿迭代法求根3.3.3scipy工
- 机器学习第二十八周周报 PINNs2
沽漓酒江
机器学习人工智能
文章目录week28PINNs2摘要Abstract一、Lipschitz条件二、文献阅读1.题目数据驱动的偏微分方程2.连续时间模型3.离散时间模型4.结论三、CLSTM1.任务要求2.实验结果3.实验代码3.1模型构建3.2训练过程代码小结参考文献week28PINNs2摘要本文主要讨论PINN。本文简要介绍了Lipschitz条件。其次本文展示了题为Physics-informedneura
- 普及精英思维任重道远
鹭江渔夫
普及就要考虑成本。国家出钱,不可能给你安排马术、击剑、高尔夫、射击。这是一。说到拉丁文,都有拉丁文,但是难度悬殊。就好像都有数学,四则运算是数学,二阶偏微分方程也是数学,这是二。看看中国每年为欧美提供多少高才生,就知道中国的义务教育水平如何。人口基数是一方面,人口基数要和教育质量共同发生作用。这是三。高等教育水平与国家科技水平有关,后发国家的学生去发达国家学习,是正常现象。后发国家在义务教育阶段为
- matlab S函数
追逐太阳的月亮
matlab
S函数中mdlDerivative(t,x,u)参数含义mdlDerivative()中的sys相当于是函数之间用x传递等于output函数x;output()中的sys相当于是输出y;mdlDerivative()的作用是将微分方程自动求积分得到结果函数;S函数的用法先是初始化;再是mdlDerivative()中对控制系统方程需要积分的方程进行计算;得到的中间变量转到output()函数中,在
- 2018-10-12
快乐的大脚aaa
第八章离散时间系统的变换域分析变换域分析原因:将求解问题简单对于连续时间系统,通过L.T.,可以将原来求解微分方程问题转化为求解代数方程问题对于离散时间系统,通过Z.T.,可以将原来求解差分方程问题转化为求解代数方程问题。离散时间序列的频域分析方法离散时间系统和离散时间序列也可以通过正交分解方法,在频域进行分析。--离散时间序列傅里叶变换DTFT,Z变换的一个特例傅里叶变换的离散形式--离散傅里叶
- [数学建模] 计算差分方程的收敛点
YuanDaima2048
算法学习matlab数学建模算法学习笔记
[数学建模]计算差分方程的收敛点差分方程:差分方程描述的是在离散时间下系统状态之间的关系。与微分方程不同,差分方程处理的是在不同时间点上系统状态的变化。通常用来模拟动态系统,如在离散时间点上更新状态并预测未来状态。收敛点:在数学或计算中,收敛点指的是序列、函数或方程不断接近某个特定值或集合的点。当序列或函数的值趋于某个值或集合时,我们称该值或集合为收敛点。在计算中,收敛点表示在进行迭代或计算的过程
- 基于python和matlab的复杂函数拟合的方法、工具以及学习资料
suoge223
复杂函数拟合pythonmatlab开发语言
复杂函数拟合是指对具有复杂形式的函数进行拟合,例如积分函数、微分方程、偏微分函数、隐函数、方程组的拟合,通常涉及到非线性、多变量、高维度、高阶、多参数等情况。在实际应用中,复杂函数拟合常常需要结合不同的拟合方法和工具来实现。下面我们将列举常见的复杂函数拟合种类、对应的拟合方法、实现工具以及示例代码。1.非线性函数拟合非线性函数拟合是对具有非线性关系的函数进行拟合,通常需要使用迭代优化算法来寻找最优
- 常/偏微分方程的类型及数值求解方法和求解工具
suoge223
numpypythonmatlab算法
本文主要列举常/偏微分方程的类型及相应数值求解方法和求解工具,并在文末推荐了网络上的一些求解常/偏微分方程课程,希望能帮助到大家!偏微分方程(PartialDifferentialEquations,PDEs)是包含未知函数及其偏导数的方程,通常用于描述多个自变量之间的关系,并广泛应用于自然科学和工程领域。根据方程的性质和系数的不同,PDEs可以分为多种类型,每种类型都有其特点和相应的求解方法。以
- Python环境下基于辛几何模态分解的信号分解方法
哥廷根数学学派
信号处理python开发语言算法人工智能
基于辛几何的分析方法是一种保护相空间几何结构的新型分析方法,主要用于求解动力学和控制系统中矩阵或Hamilton矩阵的特征值问题,用来解决在动力学和控制系统理论的2n×2n矩阵或哈密顿矩阵的特征值问题,已应用到结构损伤信号、奇异微分方程等系统中。辛几何谱分析SGSA是基于辛几何的一种分析方法,在非线性信号的降噪分析中具有独特优势。辛几何模态分解SGMD是在辛几何分析的基础上一种新的信号分解方法,其
- ODE45——求解状态变量(微分方程组)
Y. F. Zhang
控制系统仿真与CAD
ode45函数ode45实际上是数值分析中数值求解微分方程组的一种方法,4阶五级Runge-Kutta算法。调用方法[t,x]=ode45(Fun,tspan,x0,options,pars)[t,x]=ode45(Fun,tspan,x_0,options,pars)[t,x]=ode45(Fun,tspan,x0,options,pars)其实这种方程的每一个状态变量都是t的函数,我们可以从现
- 第1章 数字基础
猫三他爹
引在本章中,我们将尝试讨论整个文本中使用的所有数值技术。我们将首先讨论向量和矩阵,并说明在应用卡尔曼滤波方程时我们需要知道的各种操作。接下来,我们将展示如何使用两种不同的数值积分技术来求解线性和非线性微分方程。当我们必须将表示现实世界的微分方程整合在用于评估卡尔曼滤波器性能的模拟中时,数值积分技术是必要的。此外,有时需要数值积分技术来传播来自非线性微分方程的状态。接下来,我们将回顾用于表示随机现象
- 青马在线考试怎么搜题找答案?不妨看看这九个实用工具 #知识分享#微信#笔记
培兔兔
笔记面试职场和发展
在信息爆炸的时代,选择适合自己的学习辅助工具和资料,能够提供更高效、便捷和多样化的学习方式。1.WolframAlphaWolframAlpha堪称“数学解题神器”!可以搜索到大学多个专业的题目以及试卷答案,重点是提供的题目搜索大部分的理科学习资源,包括化学、生物、物理、数学、工程、经济、天文、统计等各个方向。一些常微分方程、泰勒展开等等,搜索的题目全部都有详细的提示,以及中间做题步骤、解决方法,
- 本科生题不会怎么搜答案?分享8个可以搜答案的软件 #职场发展#经验分享#知识分享
春色七分甜33
职场和发展经验分享
今天我就分享几款搜题软件和搜题网站给大家,每一款都能轻松搜索题目,让大家快速找到精准的答案,有需要的小伙伴快点赞收藏起来,防止需要的时候找不到啦。1.WolframAlphaWolframAlpha堪称“数学解题神器”!可以搜索到大学多个专业的题目以及试卷答案,重点是提供的题目搜索大部分的理科学习资源,包括化学、生物、物理、数学、工程、经济、天文、统计等各个方向。一些常微分方程、泰勒展开等等,搜索
- 大学生搜题用这三款神器就够了!!! #经验分享#经验分享#媒体
学习93398
媒体
大学生必备,这条笔记大数据一定定要推给刚上大学的学弟学妹!!1.WolframAlphaWolframAlpha堪称“数学解题神器”!可以搜索到大学多个专业的题目以及试卷答案,重点是提供的题目搜索大部分的理科学习资源,包括化学、生物、物理、数学、工程、经济、天文、统计等各个方向。一些常微分方程、泰勒展开等等,搜索的题目全部都有详细的提示,以及中间做题步骤、解决方法,非常方便大家的复习;2.千鸟搜题
- Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
- msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
- 路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
- Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
- web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
- c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
- 分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
- for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
- 网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
- JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
- JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
- 【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
- 【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
- Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
- java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
- mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
- [毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
- PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
- IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
- 网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
- Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
- MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
- cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
- HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
- swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
- java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
- mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
- Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
- struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st