二叉树的典型习题总结

二叉树的三种遍历方式: 

二叉树的典型习题总结_第1张图片

1.给定一个二叉树,返回它的前序遍历。root-left-right

递归实现:

    public List preorderTraversal(TreeNode root) {
       List list = new ArrayList<>();  //每次遍历都会产生一个新的list对象
       if(root == null) {
           return list;
       } 
       System.out.print(root.val + " ");
       list.add(root.val);
       List list1 = preorderTraversal(root.left);
       list.addAll(list1);
       List list2 =  preorderTraversal(root.right);
       list.addAll(list2);
       return list;
      
    }

非递归实现: 

思路分析:【栈实现】  往左走,每走一次,cur不为空打印并入栈;为空拿到栈顶元素,cur= cur.right。

    void preOrderTraversalNor(TreeNode root) {
        Stack stack = new Stack<>();
        TreeNode cur = root;
        while (cur != null || !stack.empty()) {
            while (cur != null) {
                stack.push(cur);
                System.out.print(cur.value + " ");
                cur = cur.left;
            }
            cur = stack.pop();
            cur = cur.right;
        }
    }
    List preOrderTraversalNor2(TreeNode root) {
       List list = new ArrayList<>();
        Stack stack = new Stack<>();
        TreeNode cur = root;
        while (cur != null || !stack.empty()) {
            while (cur != null) {
                stack.push(cur);
                System.out.print(cur.value + " ");
                list.add(cur.value);
                cur = cur.left;
            }
            cur = stack.pop();
            cur = cur.right;
        }
        return list;
    }

2.给定一个二叉树,返回它的中序遍历。left-root-right

递归实现:

    public List inorderTraversal(TreeNode root) {
       List list = new ArrayList<>();
       if(root == null) {
           return list;
       } 
       List list1 = inorderTraversal(root.left);
       list.addAll(list1);

       System.out.print(root.val + " ");
       list.add(root.val);

       List list2 =  inorderTraversal(root.right);
       list.addAll(list2);
       return list;
    }

非递归实现:只是和前序遍历add的位置不同。 

  List preOrderTraversalNor2(TreeNode root) {
       List list = new ArrayList<>();
        Stack stack = new Stack<>();
        TreeNode cur = root;
        while (cur != null || !stack.empty()) {
            while (cur != null) {
               stack.push(cur);
               cur = cur.left;
            }
            cur = stack.pop();
            list.add(cur.value);
            cur = cur.right;
        }
        return list;
    }

3.给定一个二叉树,返回它的后序遍历。 left-right-root

递归实现:

    public List postorderTraversal(TreeNode root) {
       List list = new ArrayList<>();
       if(root == null) {
           return list;
       } 
       List list1 = postorderTraversal(root.left);
       list.addAll(list1);

       List list2 =  postorderTraversal(root.right);
       list.addAll(list2);

       System.out.print(root.val + " ");
       list.add(root.val);

       return list;
    }

非递归实现:【栈实现】

    void postOrderTraversalnNor(TreeNode root) {
        Stack stack = new Stack<>();
        TreeNode cur = root;
        TreeNode prev = null;
        while (cur != null || !stack.empty()) {
            while (cur != null) {
                stack.push(cur);
                cur = cur.left;
            }
            //cur = null;  ??
            cur = stack.peek();
            if(cur.right == null || cur.right == prev) {
                stack.pop();
                System.out.print(cur.value+" ");
                prev = cur;
                cur = null;
            }else {
                cur = cur.right;
            }
        }

    }
   public List postorderTraversal(TreeNode root) {
        List list = new ArrayList<>();
        Stack stack = new Stack<>();
        TreeNode cur = root;
        TreeNode prev = null;
        while (cur != null || !stack.empty()) {
            while (cur != null) {
                stack.push(cur);
                cur = cur.left;
            }
            //cur = null;  异议
            cur = stack.peek();
            if(cur.right == null || cur.right == prev) {
                stack.pop();
                System.out.print(cur.val+" ");
                list.add(cur.val);
                prev = cur;
                cur = null;
            }else {
                cur = cur.right;
            }
        }
        return list;
    }

 

4.求节点个数

  //左子树的节点个数+右子树的节点的个数+1
  public int getSize(TreeNode root) {
        if (root == null) {
            return 0;
        }
        return getSize(root.left) + getSize(root.right) +1;
    }

5.求叶子节点个数

      public int getLeafSize(TreeNode root) {
        if (root == null) {
            return 0;
        } else if (root.left == null && root.right == null) {
            return 1;
        }
        return getLeafSize(root.left) + getLeafSize(root.right);
    }

6.求第k层节点个数

思路分析:求当前root的第k层,就相当于当前root.left的k-1层+当前root.right的k-1层的节点个数

   int getKLevelSize(TreeNode root, int k) {
        if (root == null) {
            return 0;
        }
        if (k == 1) {
            return 1;
        }
        return getKLevelSize(root.left, k-1) + getKLevelSize(root.right, k-1);
    }

7.查找val所在节点,没有找到返回null 根-左-右

    TreeNode find(TreeNode root, int val) {
        if (root == null) {
            return null;
        }
        if (root.value == val) {
            return root;
        }
        TreeNode ret = find(root.left, val);
        if (ret != null) {
            return ret;
        }
        ret = find(root.right, val);
        if (ret != null) {
            return ret;
        }
        return null;
    }

8.检查两棵树是否相同

   public boolean isSameTree(TreeNode p, TreeNode q) {
        if (p == null && q != null || p != null && q == null) {
            return false;
        }
        if (p == null && q == null) {
            return true;
        }
        if (p.value != q.value) {
            return false;
        }
        return isSameTree(p.left,q.left) && isSameTree(p.right,q.right);
    }

9.另一颗树的子树

    public boolean isSubtree(TreeNode s, TreeNode t) {
        if (s == null || t == null) return false;
        if(isSameTree(s,t))  return true;
        if (isSameTree(s.left,t)) return true;
        if (isSameTree(s.right,t)) return true;
        return false;
    }

10.二叉树的最大深度

思路分析:最大深度就是节点的最大层次,也就是树的高度。那也就是左树的高度和右树的高度较大的值+1(root)

二叉树的典型习题总结_第2张图片

      public int maxDepth(TreeNode root) {
        if(root == null) {
            return 0;
        }
        int leftHight = maxDepth(root.left);
        int rightHight = maxDepth(root.right);

        return leftHight > rightHight
                ? leftHight + 1 : rightHight + 1;
    }

11.判断一棵树是否为平衡二叉树
一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。

思路分析:首先我们应该判断root节点是不是平衡的,如果是再判断root.left和root.right是不是平衡的。

二叉树的典型习题总结_第3张图片

 

    public boolean isBalanced(TreeNode root) {
        if(root == null) {
            return true;
        }
        int leftHight = maxDepth(root.left);
        int rightHight = maxDepth(root.right);

        return Math.abs(leftHight-rightHight) <= 1
        && isBalanced(root.left)
        && isBalanced(root.right);
    }


     public int maxDepth(TreeNode root) {
        if(root == null) {
            return 0;
        }
        int leftHight = maxDepth(root.left);
        int rightHight = maxDepth(root.right);

        return leftHight > rightHight
                ? leftHight + 1 : rightHight + 1;
    }

12.镜像二叉树

思路分析:

二叉树的典型习题总结_第4张图片

二叉树的典型习题总结_第5张图片首先有这样一幅图,我们会发现镜像二叉树有两个必要的条件①结构对称②对应位置数字必须相等。显然一个函数并不能解决问题。因此,以当前root为根节点,判断当前root是否为空。然后当root左树的值等于右树的值 &&  leftTree.left ,rightTree.right 是 镜像二叉树 && leftTree.right , rightTree.left镜像二叉树 三个条件同时成立该树才是镜像二叉树。

注意有两个特殊情况:图二 图三 图四。

       public boolean isSymmetricChild(TreeNode leftTree,TreeNode rightTree) {
        if(leftTree == null && rightTree!= null ||  leftTree != null && rightTree == null) {
            return false;
        }
        if(leftTree == null && rightTree == null) {
            return true;
        }
        return leftTree.val == rightTree.val &&
        isSymmetricChild(leftTree.left,rightTree.right)
        &&isSymmetricChild(leftTree.right,rightTree.left);
    }
    public boolean isSymmetric(TreeNode root) {
        if(root == null) {
            return true;
        }
        return isSymmetricChild(root.left,root.right);
    }

13.层序遍历二叉树

    public List> levelOrder(TreeNode root) {
        List> ret = new ArrayList<>();

        Queue queue = new LinkedList<>();
        if(root != null) {
            queue.offer(root);
        }
        while (!queue.isEmpty()) {
            int size = queue.size();//1
            List list = new ArrayList<>();
            while (size > 0) {
                TreeNode cur = queue.poll();
                System.out.print(cur.val+" ");
                list.add(cur.val);
                size--;//0
                if(cur.left != null) {
                    queue.offer(cur.left);
                }
                if(cur.right != null) {
                    queue.offer(cur.right);
                }
            }
            ret.add(list);
        }
        return ret;
    }

14.判断一棵树是不是完全二叉树

思路分析:需要构造一个队列。当cur不为空时让cur入队列。当队列不为空时,让cur的左右节点入队列;当队列元素全为null时,说明这个树是完全二叉树;否则不是。

注意:如果是完全二叉树,遇到null 说明所有元素都放入队列 ;如果不是完全二叉树,那就不一定啦。

    boolean isCompleteTree(TreeNode root){
        Queue queue = new LinkedList<>();
        if(root != null) {
            queue.offer(root);
        }
        while (!queue.isEmpty()) {
            TreeNode cur = queue.poll();
            if(cur != null) {
                queue.offer(cur.left);
                queue.offer(cur.right);
            }else {
                break;
            }
        }

        while (!queue.isEmpty()) {
            TreeNode cur = queue.peek();
            if(cur != null) {
                return false;
            }else {
                queue.poll();
            }
        }
        return true;
    }

15.二叉树的构建及遍历

    public static int i = 0;
    public static TreeNode buildTree(String str) {
        TreeNode root = null;
        if(str.charAt(i) != '#') {
            root = new TreeNode(str.charAt(i));
            i++;
            root.left = buildTree(str);
            root.right = buildTree(str);
        }else {
            i++;
        }
        return root;
    }
//前序遍历的方式进行思考
class Solution {

    int preIndex = 0;

     public TreeNode buildTreeChild(int[] preorder,
    int[] inorder,int inbegin,int inend) {
         //判断是否有左树或者是右树
         if(inbegin > inend) {
             return null;
         }
         TreeNode root = new TreeNode(preorder[preIndex]);
         //找root在中序遍历的下标
         int rootIndex =
         findIndexOfInorder(inorder,inbegin,inend,preorder[preIndex]);
        preIndex++;

        root.left = buildTreeChild(preorder ,inorder,inbegin,
        rootIndex-1);

        root.right = buildTreeChild(preorder ,inorder
        ,rootIndex+1,inend);

        return root;
     }

     public int findIndexOfInorder(int[] inorder,int inbegin,
     int inend,int val){
         for(int i = inbegin;i <= inend;i++) {
             if(inorder[i] == val) {
                 return i;
             }
         }
         return -1;
     }


    public TreeNode buildTree(int[] preorder, int[] inorder) {
        if(preorder == null || inorder == null) {
            return null;
        }
        if(preorder.length == 0 || inorder.length ==0) {
            return null;
        }

       return buildTreeChild(preorder,inorder,0,inorder.length-1);
    }
}

 

16.给定一个二叉树,找到该树中两个指定节点的最近公共祖先

    public TreeNode find (TreeNode root, TreeNode p, TreeNode q) {
        if(root == null) {
            return null;
        }
        if (root == p || root == q) {
            return root;
        }
        TreeNode leftTree = find(root.left, p, q);
        TreeNode rightTree = find(root.right, p, q);
        if (leftTree != null && rightTree != null) {
            return root;
        }
        if (leftTree != null) {
            return leftTree;
        }
        if (rightTree != null) {
            return rightTree;
        }
        return null;
    }

17.二叉搜索树转化为排序双向链表

    TreeNode prev = null; //标记上一个节点
    public void ConvertChild(TreeNode pCur) {
        if(pCur == null) {
            return;
        }
        ConvertChild(pCur.left);
        pCur.left = prev;
        if(prev != null) {
            prev.right = pCur;
        }
        prev = pCur;
        ConvertChild(pCur.right);
    }

    //返回的是双向链表的头结点
    public TreeNode Convert(TreeNode pRootOfTree) {
        //这个函数,执行完成后,二叉搜索树的结构已经被改变了
        ConvertChild(pRootOfTree);
        TreeNode head = pRootOfTree;
        //一路向左
        while (head != null && head.left != null) {
            head = head.left;
        }
        return head;
    }

 

18.根据一棵树的前序遍历和中序遍历构建二叉树

class Solution {

    int preIndex = 0;

     public TreeNode buildTreeChild(int[] preorder,
    int[] inorder,int inbegin,int inend) {
         //判断是否有左树或者是右树
         if(inbegin > inend) {
             return null;
         }
         TreeNode root = new TreeNode(preorder[preIndex]);
         //找root在中序遍历的下标
         int rootIndex =
         findIndexOfInorder(inorder,inbegin,inend,preorder[preIndex]);
        preIndex++;

        root.left = buildTreeChild(preorder ,inorder,inbegin,
        rootIndex-1);

        root.right = buildTreeChild(preorder ,inorder
        ,rootIndex+1,inend);

        return root;
     }

     public int findIndexOfInorder(int[] inorder,int inbegin,
     int inend,int val){
         for(int i = inbegin;i <= inend;i++) {
             if(inorder[i] == val) {
                 return i;
             }
         }
         return -1;
     }


    public TreeNode buildTree(int[] preorder, int[] inorder) {
        if(preorder == null || inorder == null) {
            return null;
        }
        if(preorder.length == 0 || inorder.length ==0) {
            return null;
        }

       return buildTreeChild(preorder,inorder,0,inorder.length-1);
    }
}

19..根据一棵树的中序遍历和后序遍历构建二叉树

class Solution {
    public int postIndex = 0;

    public TreeNode buildTreeChild(int[] inorder,
     int[] postorder,int inbegin,int inend) {
         //判断是否有左树或者是右树
         if(inbegin > inend) {
             return null;
         }
         TreeNode root = new TreeNode(postorder[postIndex]);
         //找root在中序遍历的下标
         int rootIndex =
         findIndexOfInorder(inorder,inbegin,inend,postorder[postIndex]);
        postIndex--;

          root.right = buildTreeChild(inorder
        ,postorder ,rootIndex+1,inend);


        root.left = buildTreeChild(inorder ,postorder,inbegin,
        rootIndex-1);


        return root;
     }

     public int findIndexOfInorder(int[] inorder,int inbegin,
     int inend,int val){
         for(int i = inbegin;i <= inend;i++) {
             if(inorder[i] == val) {
                 return i;
             }
         }
         return -1;
     }

    public TreeNode buildTree(int[] inorder, int[] postorder) {
     if(postorder == null || inorder == null) {
            return null;
        }
        if(postorder.length == 0 || inorder.length ==0) {
            return null;
        }
       postIndex = postorder.length-1;
       return buildTreeChild(inorder,postorder,0,inorder.length-1);
    }
}

20.二叉树创建字符串

二叉树的典型习题总结_第6张图片二叉树的典型习题总结_第7张图片

 

class Solution {

    public void tree2strChild(TreeNode t,StringBuilder sb) {
        if(t == null) {
            return ;
        }
        sb.append(t.val);
        if(t.left == null) {
            if(t.right == null) {
                return;
            }else{
                sb.append("()");
            }
        }else{
            sb.append("(");
            tree2strChild(t.left,sb);
            sb.append(")");
        }
        //以上代码是递归前t的位置
        if(t.right == null) {
            return;
        }else{
            sb.append("(");
            tree2strChild(t.right,sb);
            sb.append(")");
        }

    }

    public String tree2str(TreeNode t) {
        StringBuilder sb = new StringBuilder();

        tree2strChild(t,sb);

        return sb.toString();
    }
}

 

你可能感兴趣的:(二叉树的典型习题总结)