---------------------
CUDA安装
根据官网描述在下载CUDA之前请确保:
GPU型号兼容
支持的Windows版本
支持的Microsoft Visual Studio版本
cuda下载地址:https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
CUDA10.1
https://developer.nvidia.com/cuda-10.1-download-archive-base
CUDA安装路径:“C:\ProgramData\NVIDIA GPU Computing Toolkit\v10”
或者安装在D:\ProgramData\NVIDIA GPU Computing Toolkit\v10 后面下载的cudnn要放在CUDA安装路径中。
---------------------
cuDNN下载 (迅雷下载即可)
cuDNN只是cuda的一个补丁。需要注册一个官网帐号, 下载地址:https://developer.nvidia.com/rdp/cudnn-archive
https://developer.download.nvidia.com/compute/machine-learning/cudnn/secure/7.6.5.32/Production/10.2_20191118/cudnn-10.2-windows10-x64-v7.6.5.32.zip
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/7.6.4.38/Production/10.1_20190923/cudnn-10.1-windows10-x64-v7.6.4.38.zip
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.4.1.5/prod/10.0_20181108/cudnn-10.0-windows10-x64-v7.4.1.5.zip
解压缩下载的CuDnn文件,得到3个文件夹:bin, include, lib。
将这个三个文件夹复制到“C:\ProgramData\NVIDIA GPU Computing Toolkit\v10” (CUDA安装路径)
或者安装在D:\ProgramData\NVIDIA GPU Computing Toolkit\v10
之后确认环境变量:
确认CUDA_PATH和CUDA_PATH_V10已经存在。如果没有。
手动添加 “D:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\bin”到Path里面。
---------------------
如何验证是否正确安装了CUDA
在运行里面输入“cmd” 然后用命令“nvcc -V”进行测试 必须用大写的V,否则出错
即如下的代码
nvcc -V
运行的结果如下
==============================
pip安装Tensorflow-gpu
注意:
目前tensorflow1.15已经支持cuda10.2,【需要其他版本的,请在大神编译的各种版本的tensorflow安装包地址:https://github.com/fo40225/tensorflow-windows-wheel 根据说明找到资源路径:[1.11-1.12 必须安装cuda10]】
【尽量不要用清华源】
pip install tensorflow-gpu #这是安装tensorflow-gpu 2.0
pip install tensorflow-gpu==1.15 #这是安装tensorflow-gpu 1.15
【需要翻~~~墙,否则 installed tensorboard-1.15无法安装,导致安装失败】
最后pip list查看:
运行测试
最后输入python
输入import tensorflow as tf 查看:
完工~~体验gpu的运算速度吧
【更新时间2020.5.7】Win10 +VS2017+ python3.75 + CUDA10.2 + cuDNNv7.65 + tensorflow-gpu 1.15 最新版
-