ES6让我们聊一下Promise

回调

说起promise,我们一般都会从回调或者回调地狱说起,那么回调到底会导致那些不好的地方呢

1、回调嵌套

使用回调 ,,我们很可能会将业务代码写成如下 这种形式

doA( function(){
    doB()
    doC( function(){
        doD();
    } )
    doE();
} )
doF();

当然这是一种简化的形式,经过一番简单的思考,我们可以判断出执行的顺序为

doA()
doF()
doB()
doC()
doE()
doD()

然而实际项目中,代码会更加混乱,为了排查问题,我们需要绕过很多碍眼的内容,不断在函数间进行跳转,使得排查问题的难度也在成倍增加
当然之所以导致这个问题,其实是因为这种嵌套的写法跟人线性的思考方式相违和,以至于我们要多花一些精力去思考真正的执行顺序,嵌套和缩进只是这个思考过程中转移注意力的细枝末节而已

当然了,与人线性的思考方式向违和,还不是最糟糕的,实际上,我们还会在代码中加入各种各样的逻辑判断,就不如在上面的一个例子中,doD()必须在doC完成后才能完成,万一diC执行失败了呢?我们是要重试doC吗?还是直接转到其他错误处理函数中?当我们将这些判断都加入这个流程中去,很快,代码就会变得很复杂,甚至无法维护和更新

2.控制反转

正常书写代码的时候,我们理所当然可以控制自己的代码,然而当我们使用回调的时候,这个回调函数是否能接着执行,其实这决定于回调的那个api。比如

// 回调函数是否被执行取决于 buy 模块
import {buy} from './buy.js';

buy(itemData, function(res) {
    console.log(res)
});

对于我们经常使用的fetch的这种api,一般是没有什么问题的,但是如果我们使用的是第三方的API呢?
当你使用调用第三方的API,对方是否因为某个错误导致你传入的回调函数执行了多次呢?
为了避免这种情况发生,你可以在自己的回调函数中加入判断,可是万一 又因为某个错误这个回调函数没有执行呢?
万一这个回调函数有时同步 有时异步呢?
我们 总结一下这些情况
1、回调函数执行多次
2、回调函数有没有执行
3、回调函数有时同步执行有时异步执行
对于这些情况,你可能都要在回调函数中去做些处理,并且每次执行回调函数都要做些处理,这就带来了很多重复的代码

3.回调 地狱

我们先看一个简单的回调地狱的示例。

现在要找出一个目录中最大的文件,处理步骤应该是:

用 fs.readdir 获取目录中的文件列表;
循环遍历文件,使用 fs.stat 获取文件信息
比较找出最大文件;
以最大文件的文件名为参数调用回调。
代码为:

var fs = require('fs');
var path = require('path');

function findLargest(dir, cb) {
    // 读取目录下的所有文件
    fs.readdir(dir, function(er, files) {
        if (er) return cb(er);

        var counter = files.length;
        var errored = false;
        var stats = [];

        files.forEach(function(file, index) {
            // 读取文件信息
            fs.stat(path.join(dir, file), function(er, stat) {

                if (errored) return;

                if (er) {
                    errored = true;
                    return cb(er);
                }

                stats[index] = stat;

                // 事先算好有多少个文件,读完 1 个文件信息,计数减 1,当为 0 时,说明读取完毕,此时执行最终的比较操作
                if (--counter == 0) {

                    var largest = stats
                        .filter(function(stat) { return stat.isFile() })
                        .reduce(function(prev, next) {
                            if (prev.size > next.size) return prev
                            return next
                        })

                    cb(null, files[stats.indexOf(largest)])
                }
            })
        })
    })
}

使用方式为:

// 查找当前目录最大的文件
findLargest('./', function(er, filename) {
    if (er) return console.error(er)
    console.log('largest file was:', filename)
});

你可以将以上代码复制到一个比如 index.js 文件,然后执行 node index.js 就可以打印出最大的文件的名称。

看完这个例子,我们再来聊聊回调地狱的其他问题:

1.难以复用

回调函数的顺序确定下来之后,想对其中的某些环节进行复用也很困难,牵一发而动全身

举个例子,如果你想对fs。stat读取文件信息这段代码复用,因为回调引用了外层的变量,提取出来后还需要对外层的代码进行修改

2.堆栈信息被断开

我们知道,javascript引擎维护了一个执行上下文栈,当函数执行的时候,会创建该函数的上下文压入栈中,当函数执行完毕的时候,会将执行上下文出栈。

如果A函数调用了B函数,javascript会先将A函数的执行压入栈中。再将B函数的执行上下文压入栈中,当B函数执行完毕,将B函数执行上下文出栈,当A函数执行完毕后,将A函数执行上下文出栈。
这样的好处在于,我们如果中断代码的执行,我们可以检索完整的堆栈信息,从中获取任何我们想要的信息

可是异步函数并非如此,比如执行fs。readir 的时候,其实我们是将回调函数加入到任务队列中去,代码会继续执行,直至主线程完成后,才回从任务队列选择已经完成的任务,并将其加入栈中,此时栈中只有这一个执行上下文,如果回调报错,也无法获取调用该异步操作时的栈中信息,不容易判断出现了错误。

此外,因为异步的缘故,使用try/catch语句也无法直接捕获错误
(不过,promise并没有解决这个问题)

3、借助外层变量

当多个异步计算同时进行,比如这里遍历读取文件信息,由于无法预计完成顺序,必须借助外层作用域的变量,比如这里的count,errored ,stats等,不仅写起来麻烦,而且如果你忽略了文件读取错误的情况,不记录错误状态,就会接着读取其他文件,造成无谓的浪费,此外外层得到变量,也可能被其他同一作用域访问并且修改,容易做成误操作

之所以单独讲讲回调地狱,其实是想说嵌套和缩进只是回调地狱的一个梗而已,他导致的问题远非嵌套导致的可读性降低而已

Promise

promise使得以上绝大部分的问题得到了解决

1、嵌套问题

举个例子:


request(url, function(err, res, body) {
    if (err) handleError(err);
    fs.writeFile('1.txt', body, function(err) {
        request(url2, function(err, res, body) {
            if (err) handleError(err)
        })
    })
});

使用 Promise 后:

request(url)
.then(function(result) {
    return writeFileAsynv('1.txt', result)
})
.then(function(result) {
    return request(url2)
})
.catch(function(e){
    handleError(e)
});

而对于读取最大文件的那个例子,我们使用 promise 可以简化为:

var fs = require('fs');
var path = require('path');

var readDir = function(dir) {
    return new Promise(function(resolve, reject) {
        fs.readdir(dir, function(err, files) {
            if (err) reject(err);
            resolve(files)
        })
    })
}

var stat = function(path) {
    return new Promise(function(resolve, reject) {
        fs.stat(path, function(err, stat) {
            if (err) reject(err)
            resolve(stat)
        })
    })
}

function findLargest(dir) {
    return readDir(dir)
        .then(function(files) {
            let promises = files.map(file => stat(path.join(dir, file)))
            return Promise.all(promises).then(function(stats) {
                return { stats, files }
            })
        })
        .then(data => {

            let largest = data.stats
                .filter(function(stat) { return stat.isFile() })
                .reduce((prev, next) => {
                    if (prev.size > next.size) return prev
                    return next
                })

            return data.files[data.stats.indexOf(largest)]
        })

}
}

2.控制反转再反转

前面我们讲到使用第三方回调 API 的时候,可能会遇到如下问题:

回调函数执行多次
回调函数没有执行
回调函数有时同步执行有时异步执行
对于第一个问题,Promise 只能 resolve 一次,剩下的调用都会被忽略。

对于第二个问题,我们可以使用 Promise.race 函数来解决:

function timeoutPromise(delay) {
    return new Promise( function(resolve,reject){
        setTimeout( function(){
            reject( "Timeout!" );
        }, delay );
    } );
}

Promise.race( [
    foo(),
    timeoutPromise( 3000 )
] )
.then(function(){}, function(err){});

对于第三个问题,为什么有的时候会同步执行有的时候回异步执行呢?

我们来看个例子:

var cache = {...};
function downloadFile(url) {
      if(cache.has(url)) {
            // 如果存在cache,这里为同步调用
           return Promise.resolve(cache.get(url));
      }
     return fetch(url).then(file => cache.set(url, file)); // 这里为异步调用
}
console.log('1');
getValue.then(() => console.log('2'));
console.log('3');

在这个例子中,有 cahce 的情况下,打印结果为 1 2 3,在没有 cache 的时候,打印结果为 1 3 2。

然而如果将这种同步和异步混用的代码作为内部实现,只暴露接口给外部调用,调用方由于无法判断是到底是异步还是同步状态,影响程序的可维护性和可测试性。

简单来说就是同步和异步共存的情况无法保证程序逻辑的一致性。

然而 Promise 解决了这个问题,我们来看个例子:

var promise = new Promise(function (resolve){
    resolve();
    console.log(1);
});
promise.then(function(){
    console.log(2);
});
console.log(3);

// 1 3 2

即使 promise 对象立刻进入 resolved 状态,即同步调用 resolve 函数,then 函数中指定的方法依然是异步进行的。

解决问题就是不管api是同步还是异步的,通过Promise使用,将最终结果都是异步的,保证程序逻辑 的一致性
PromiseA+ 规范也有明确的规定:

实践中要确保 onFulfilled 和 onRejected 方法异步执行,且应该在 then
方法被调用的那一轮事件循环之后的新执行栈中执行。

Promise反模式

1.Promise 嵌套

// bad
loadSomething().then(function(something) {
    loadAnotherthing().then(function(another) {
        DoSomethingOnThem(something, another);
    });
});

// good

Promise.all([loadSomething(), loadAnotherthing()])
.then(function ([something, another]) {
    DoSomethingOnThem(...[something, another]);
});

2.断开的 Promise 链

// bad
function anAsyncCall() {
    var promise = doSomethingAsync();
    promise.then(function() {
        somethingComplicated();
    });

    return promise;
}

// good


function anAsyncCall() {
    var promise = doSomethingAsync();
    return promise.then(function() {
        somethingComplicated()
    });
}

3.混乱的集合

// bad
function workMyCollection(arr) {
    var resultArr = [];
    function _recursive(idx) {
        if (idx >= resultArr.length) return resultArr;

        return doSomethingAsync(arr[idx]).then(function(res) {
            resultArr.push(res);
            return _recursive(idx + 1);
        });
    }

    return _recursive(0);
}

你可以写成:

function workMyCollection(arr) {
    return Promise.all(arr.map(function(item) {
        return doSomethingAsync(item);
    }));
}

如果你非要以队列的形式执行,你可以写成:

function workMyCollection(arr) {
    return arr.reduce(function(promise, item) {
        return promise.then(function(result) {
            return doSomethingAsyncWithResult(item, result);
        });
    }, Promise.resolve());
}

4.catch

// bad
somethingAync.then(function() {
    return somethingElseAsync();
}, function(err) {
    handleMyError(err);
});

如果 somethingElseAsync 抛出错误,是无法被捕获的。你可以写成:

// good
somethingAsync()
.then(function() {
    return somethingElseAsync()
})
.then(null, function(err) {
    handleMyError(err);
});
// good
somethingAsync()
.then(function() {
    return somethingElseAsync();
})
.catch(function(err) {
    handleMyError(err);
});

红绿灯问题
题目:红灯三秒亮一次,绿灯一秒亮一次,黄灯2秒亮一次;如何让三个灯不断交替重复亮灯?(用 Promse 实现)

三个亮灯函数已经存在:

function red(){
    console.log('red');
}
function green(){
    console.log('green');
}
function yellow(){
    console.log('yellow');
}
利用 then 和递归实现:

function red(){
    console.log('red');
}
function green(){
    console.log('green');
}
function yellow(){
    console.log('yellow');
}

var light = function(timmer, cb){
    return new Promise(function(resolve, reject) {
        setTimeout(function() {
            cb();
            resolve();
        }, timmer);
    });
};

var step = function() {
    Promise.resolve().then(function(){
        return light(3000, red);
    }).then(function(){
        return light(2000, green);
    }).then(function(){
        return light(1000, yellow);
    }).then(function(){
        step();
    });
}
step();

promisify
有的时候,我们需要将 callback 语法的 API 改造成 Promise 语法,为此我们需要一个 promisify 的方法。

因为 callback 语法传参比较明确,最后一个参数传入回调函数,回调函数的第一个参数是一个错误信息,如果没有错误,就是 null,所以我们可以直接写出一个简单的 promisify 方法:

function promisify(original) {
    return function (...args) {
        return new Promise((resolve, reject) => {
            args.push(function callback(err, ...values) {
                if (err) {
                    return reject(err);
                }
                return resolve(...values)
            });
            original.call(this, ...args);
        });
    };
}

完整的可以参考 es6-promisif

Promise的局限性

1.错误被吃掉
首先,我们要理解,什么是错误被吃掉,是指错误信息不被打印吗
并不是。,举个例子

throw new Error('error');
console.log(233333);

在这种情况下,因为 throw error 的缘故,代码被阻断执行,并不会打印 233333,再举个例子:

const promise = new Promise(null);
console.log(233333);

以上代码依然会被阻断执行,这是因为如果通过无效的方式使用 Promise,并且出现了一个错误阻碍了正常 Promise 的构造,结果会得到一个立刻跑出的异常,而不是一个被拒绝的 Promise。

然而再举个例子:

let promise = new Promise(() => {
    throw new Error('error')
});
console.log(2333333);

这次会正常打印23333,说明Promise的内部的错误不会影响到Promise外部的代码。而这种情况我们就通常称为“吃掉错误”

其实这并不是Promise的局限性,try.catch也是这样,同样会捕获一个异常并简单的吃掉错误。
而正是 因为错误被吃掉,Promise链中的错误很容易被忽略,这也是为什么一般推荐在Promise链的最后添加一个catch函数,因为,对于一个没有错误的处理函数的Promise链,任何错误都会被在链中被传播下去,直到你注册了错误处理函数

2.单一值

Promise只能有一个完成值,或一个拒绝原因,然而在真实使用的时候,往往需要传递多个值,一般做法都是,构造一个对象或数组,然后再传递,then中获得之个值之后,又会进行取值赋值的操作,每次封装和解封都无疑让代码变得笨重。
说真的,并没有什么好的办法,建议使用ES6的解构赋值;

Promise.all([Promise.resolve(1), Promise.resolve(2)])
.then(([x, y]) => {
    console.log(x, y);
});

3.无法取消
Promise一带建立就会立即执行,无法中途取消

4,无法得知Pending状态
当处于pending状态时,无法得知目前进展到哪一个阶段(刚刚开始,还是即将完成)

参考

  • 《你不知道的 JavaScript 中卷》
  • Promise 的 N 种用法
  • JavaScript Promise 迷你书
  • Promises/A+规范
  • Promise 如何使用
  • Promise Anti-patterns
  • 一道关于Promise应用的面试题

你可能感兴趣的:(前端)