- 【花雕动手做】基于ESP32S3和通义千问大模型AI语音聊天机器人
驴友花雕
人工智能机器人嵌入式硬件单片机c++基于ESP32S3通义千问AI语音聊天机器人
开源项目1、核心功能:该项目利用ESP32S3开发板,结合通义千问大模型,实现了一个AI语音聊天机器人。用户可以通过语音与机器人进行交互,机器人能够理解用户的语音指令并给出相应的语音回答。2、技术架构:(1)语音识别:使用语音转文字大模型,将用户的语音输入转换为文本信息。(2)文本理解:将转换后的文本发送到通义千问大模型进行处理,模型会根据文本内容生成相应的回答。(3)语音合成:将模型生成的文本答
- STM32实时时钟(RTC)代码深度解析 | 零基础入门STM32第三十九步
触角01010001
STM32stm32单片机嵌入式硬件
主题内容教学目的/扩展视频RTC时钟的使用重点课程RTC时钟的原理,电路原理分析,固件库分析,驱动程序分析。在超级终端上显示时钟。做可修改的超级终端显示RTC的项目。师从洋桃电子,杜洋老师文章目录一、RTC初始化流程分析1.1时钟与备份域配置1.2初始化检测机制二、时间处理核心算法2.1闰年判断算法2.2时间戳转换(Unix时间)三、时间读取与转换3.1读取计数器值3.2星期计算算法四、中断处理机
- c语言笔记 函数参数的等价(下)
我是大咖
c语言笔记c语言笔记开发语言
为什么这三种写法是等价的?这三种写法是等价的,数组在作为函数参数的时候会变成指针,数组的大小会被系统编译器自动忽略所以char*(argv[argc])等价于char*(argv[])*和[]是可以相互转换的所以char*(argv[])等价char*(*argv)作为命令行:这里我们需要的是一个指针数组,其实上面的理解都可以理解成一个指针数组,因为指针数组与char型的二维数组好搭配int*p[
- java websocket 认证_配置JAVA SSL/TLS 之websocket wss交互式认证
weixin_39695490
javawebsocket认证
我下面生成的.keystore文件也可以用.jks后缀代替,jks的意思就是javakeystore,另外需要知道.cer文件是二进制的,.pem文件是文本文件,本质都是一样的,他们可以互相转换。java语言操作的是二进制的文件,其他的一些脚本语言,可能操作的是PEM格式的文件。看具体情况吧。创建服务端keystorekeytool-genkey-v-aliasserver_ks-keysize2
- ROS实践(三)xacro文件基础(urdf扩展)
简约少年
ROS机器人xacro
目录一、定义二、xacro文件常见组成部分1.命名空间声明2.定义宏3.调用宏4.定义参数5.条件语句6.转换xacro文件为urdf7.gazebo标签三、代码示例1.gazebo标签使用(仿真参数配置)2.引用仿真配置并定义机器人模型(结构)四、加载仿真模型(含传感器的机器人)1.编写launch文件。2.实际效果。一、定义通俗来说,xacro就是urdf文件的一种“进阶版”,它是用来简化和优
- Spring Boot 集成 Kettle
m0_74824112
面试学习路线阿里巴巴springboot后端java
Kettle简介Kettle最初由MattCasters开发,是Pentaho数据集成平台的一部分。它提供了一个用户友好的界面和丰富的功能集,使用户能够轻松地设计、执行和监控ETL任务。Kettle通过其强大的功能和灵活性,帮助企业高效地处理大规模数据集成任务。主要组成部分Spoon:用途:Spoon是Kettle的图形化设计工具。用户可以使用Spoon设计和调试ETL转换和作业。功能:拖放式界面
- 大模型全军覆没,中科院自动化所推出多图数学推理新基准 | CVPR 2025
量子位
关注前沿科技量子位挑战多图数学推理新基准,大模型直接全军覆没?!事情是这样的。近日,中国科学院自动化研究所推出多图数学推理全新基准MV-MATH(该工作已被CVPR2025录用),这是一个精心策划的多图数学推理数据集,旨在全面评估MLLM(多模态大语言模型)在多视觉场景中的数学推理能力。结果评估下来发现,GPT-4o仅得分32.1,类o1模型QvQ得分29.3,所有模型均不及格。具体咋回事,下面接
- 10 大中文医学数据集汇总:涵盖神农中医药、中医药古籍、医学推理、医学问答……
医疗人工智能的快速发展离不开高质量数据集的支持。从疾病诊断到药物研发,再到个性化医疗,数据集在推动机器视觉、大模型等应用于医学领域中发挥着不可或缺的作用。医学数据集的形式多样,涵盖了不同维度和领域的数据资源。例如,在疾病诊断领域,像RJUA-QA这样的问答数据集推动了复杂医学知识的自动化应用;而在中医药领域,神农中医药数据集整合了传统中医药文献、临床案例和药方数据。针对于此,本文整理了医学领域的1
- 中文对联/十二生肖/城市景点/旅游计划……年味超浓的数据集汇总
正月初三,年味正浓。新春的喜庆氛围不仅弥漫在大街小巷,也在人工智能领域引发了诸多创新应用。从AI生成春联,到春运交通标志的智能识别,再到生肖文化的深度挖掘,AI工具正赋能传统民俗,让年味更浓!在这阖家团圆,喜庆祥和的日子里,HyperAI超神经为大家整理了8个春节相关的数据集,涵盖对联、十二生肖、民族文化等热门主题,助力开发者在AI赋能春节的道路上大展拳脚!快来领取你的「新春大礼包」吧~点击查看更
- selectdataset 发布2024最热门Top100数据集
数据集
遇见数据集索引了国内外的大部分网站。首页有最新的数据集推荐:GitHub、HuggingFace、arXiv这些热门站点,都属于日级别的更新。这个站点是从搜索引擎方面去监控最新的数据集,大家如果有关注某个一个特点领域或话题的更新,可以关注这个站点:遇见数据集-让每个数据集都被发现,让每一次遇见都有价值。遇见数据集,领先的千万级数据集搜索引擎,实时追踪全球数据集,助力把握数据要素市场。https:/
- 空间智能数据集(不定期更新)
数据集
在人工智能领域的顶级会议NeurIPS上,斯坦福大学的杰出教授李飞飞发表了题为《FromSeeingtoDoing:AscendingtheLadderofVisualIntelligence》的主题演讲。在这次演讲中,李飞飞教授探讨了机器视觉的未来以及人工智能如何塑造我们的现实世界。她强调了空间智能的重要性,并将其视为全面智能的基石。李飞飞教授指出,解决空间智能问题是迈向全面智能的基础性、关键性
- Webpack 打包详细教程
oliver.chau
前端开发webpack前端node.js
Webpack是一个现代JavaScript应用的静态模块打包工具,它可以处理JavaScript、CSS、图片等资源,并优化它们以提高性能。以下是Webpack从基础到进阶的详细教程。1.Webpack基础概念Webpack的核心概念包括:Entry(入口):Webpack开始打包的起点。Output(输出):打包后的文件存放路径。Loaders(加载器):转换非JavaScript资源(如CS
- 微信小程序云开发的sql语法 where `$and` 运算符怎么用?踩坑总结!
代码简单说
2025开发必备微信小程序sql小程序where微信小程序and
微信小程序云开发$and组合查询时间戳转换**最近在小程序云开发里用$and组合查询,结果直接翻车,明明条件写对了,却总是查不出数据,要么就是报错,真是要被折腾疯了,官方文档也没给完整示例,最终折腾了半天,终于找到正确用法,现在分享出来,避免大家踩坑1.$and查询失败的真正原因在云开发数据库查询时,如果你的$and组合条件查不出数据,大概率是因为数据类型不匹配,特别是在时间筛选时,很多人会写成这
- JS: 类型转换 + 运算符 + 循环
..儒
javascript开发语言ecmascript
类型转换一,为什么需要类型转换JavaScript是弱数据类型:JavaScript也不知道变量到底属于那种数据类型,只有赋值了才清楚。坑:使用表单、prompt获取过来的数据默认是字符串类型的,此时就不能直接简单的进行加法运算。console.log('1000e'+‘2000')//输出结果100002000此时需要转换变量的数据类型。通俗来说,就是把一种数据类型的变量转换成我们需要的数据类型
- Hive在大数据集群下的部署
正在绘制中
大数据大数据hive
hive安装1)把apache-hive-3.1.3-bin.tar.gz上传到Linux的/opt/software目录下2)解压apache-hive-3.1.3-bin.tar.gz到/opt/module/目录下面tar-zxvf/opt/software/apache-hive-3.1.3-bin.tar.gz-C/opt/module/3)修改apache-hive-3.1.3-bin
- Hadoop、Spark和 Hive 的详细关系
夜行容忍
hadoopsparkhive
Hadoop、Spark和Hive的详细关系1.ApacheHadoopHadoop是一个开源框架,用于分布式存储和处理大规模数据集。核心组件:HDFS(HadoopDistributedFileSystem):分布式文件系统,提供高吞吐量的数据访问。YARN(YetAnotherResourceNegotiator):集群资源管理和作业调度系统。MapReduce:基于YARN的并行处理框架,用
- 卷积神经网络(笔记01)
天行者@
cnn人工智能深度学习
视觉处理三大任务:分类、目标检测、图像分割CNN网络主要有三部分构成:卷积层(ConvolutionalLayer)、池化层(PoolingLayer)和激活函数一、解释卷积层中的偏置项是什么,并讨论在神经网络中引入偏置项的好处。在卷积神经网络(CNN)的卷积层里,卷积操作本质上是输入数据与卷积核(滤波器)进行逐元素相乘再求和的过程。偏置项(Bias)是一个额外的可学习参数,对于每个卷积核而言,都
- 常用图像增强算法原理及 OpenCV C++ 实现
埃菲尔铁塔_CV算法
opencv计算机视觉人工智能c++算法机器学习
一、引言图像增强是数字图像处理中的一个重要分支,其目的是改善图像的视觉效果,突出图像中的重要信息,或者将图像转换为更适合人或机器分析处理的形式。在实际应用中,图像增强技术广泛应用于医学影像、遥感图像、安防监控等领域。本文将详细介绍常用的图像增强算法原理,并给出基于OpenCVC++库的实现代码。二、图像增强算法分类图像增强算法可以分为空间域增强和频域增强两大类。空间域增强是直接对图像的像素值进行操
- 算法与数据结构(回文数)
a_j58
数据结构
题目思路对于这个我的第一想法就是转换为字符串然后判断字符串是否为回文,它会消耗额外的地址空间。还有一种想法就是将数字反转并判断是否为回文,但可能需要处理数字溢出的问题。若要避免出现数字溢出的问题,我们可以只反转它的一半,若前半部分和后半部分相同,则说明它是一个回文数。如123321,我们将它的后半部分反转,得到123,它与前半部分相同,说明它是一个回文数。算法首先,我们可以先考虑到它的一些临界情况
- DSP28335 ADC模块SOC触发机制详解(附完整代码)
DOMINICHZL
dsp单片机嵌入式硬件
[摘要]本文基于TITMS320F28335芯片,深入讲解其ADC模块的SOC(Start-of-Conversion)触发机制,涵盖软件触发、ePWM硬件触发等模式,并提供完整的配置代码与实验验证方法。1.ADC模块与SOC概述DSP28335的ADC模块为12位精度、16通道模数转换器,支持8个独立的SOC(Start-of-Conversion)配置。每个SOC可独立配置以下参数:触发源(软
- 大数据技术生态圈:Hadoop、Hive、Spark的区别和关系
雨中徜徉的思绪漫溢
大数据hadoophive
大数据技术生态圈:Hadoop、Hive、Spark的区别和关系在大数据领域中,Hadoop、Hive和Spark是三个常用的开源技术,它们在大数据处理和分析方面发挥着重要作用。虽然它们都是为了处理大规模数据集而设计的,但它们在功能和使用方式上存在一些区别。本文将详细介绍Hadoop、Hive和Spark的区别和关系,并提供相应的源代码示例。Hadoop:Hadoop是一个用于分布式存储和处理大规
- 决策树的核心思想
code 旭
AI人工智能学习决策树算法机器学习
一、决策树的核心思想本质:通过特征判断对数据集递归划分,形成树形结构。目标:生成一组“若-则”规则,使数据划分到叶子节点时尽可能纯净。关键流程:特征选择:选择最佳分裂特征(如信息增益最大)。节点分裂:根据特征取值划分子节点。停止条件:节点样本纯度过高或样本数过少时终止。二、数学公式与理论1.信息熵(InformationEntropy)衡量数据集的混乱程度:H(D)=−∑k=1Kpklog2pk
- 【LLM】预训练的具体流程
FOUR_A
LLMpython人工智能深度学习大模型
分词器训练预训练模型:就像你已经学会了一些基础知识的“大脑”,我们可以在这个基础上继续学习新东西。比如,有些模型已经学会了英语,但中文学得不够好。中文预训练:为了让这个“大脑”更好地理解中文,我们需要用大量的中文数据继续训练它。分词器(Tokenizer):它的作用是把一句话拆分成一个个小单元(比如词语或字)。比如,“我喜欢学习”会被拆成“我/喜欢/学习”。这些拆分后的单元会被转换成数字,方便模型
- CV:傅里叶变换
壹十壹
CV人工智能计算机视觉python
图像中的傅里叶变换主要指将图像从空间域转换到频域的过程。通过傅里叶变换,我们可以将图像看作是不同频率正弦波的叠加,这有助于分析图像的周期性特征、纹理和噪声等信息。主要概念频域表示幅值谱(MagnitudeSpectrum):反映了各个频率成分的能量或强度。低频部分一般对应图像中的整体轮廓和大致结构,高频部分则反映图像的边缘、细节和噪声。相位谱(PhaseSpectrum):包含了图像的空间位置信息
- PointPillars:数据预处理
壹十壹
激光雷达感知深度学习人工智能神经网络pythonc++
在PointPillars算法中,将点云划分为点柱(Pillars)是核心步骤之一,用于将稀疏点云数据转换为规则的张量表示,方便后续2D卷积操作。以下是点云划分为点柱的具体方法和实现步骤:1.点云划分为网格将3D空间划分为规则的网格,形成柱状区域(Pillars)。操作步骤:定义网格范围和分辨率:确定点云的空间范围,例如:Xmin,Xmax,Ymin,Ymax,Zmin,ZmaxX_{\text{
- 目标检测
煤烦恼
目标检测人工智能大数据pytorch
1.概念:目标检测是识别图片中物体并确定其位置的多任务技术,面临目标种类数量多、尺度不均、外部环境干扰等问题。这里的数字为置信度2.数据集:VOC数据集分4大类20小类;COCO数据集含20万图像、80个类别、超50万目标标注,平均每图7.2个目标。3.GroundTruth格式:包含类别和边界框坐标,常见的有YOLO(归一化中心点坐标和宽高)、VOC(左上角和右下角坐标)、COCO(左上角坐标和
- ELK Stack 安装教程 - 构建日志存储告警系统
运维
介绍“ELK”是三个开源项目的首字母缩写,这三个项目分别是:Elasticsearch、Logstash和Kibana。Elasticsearch是一个搜索和分析引擎。Logstash是服务器端数据处理管道,能够同时从多个来源采集数据,转换数据,然后将数据发送到诸如Elasticsearch等“存储库”中。Kibana则可以让用户在Elasticsearch中使用图形和图表对数据进行可视化。目前最
- 《 YOLOv5、YOLOv8、YOLO11训练的关键文件:data.yaml文件编写全解》
空云风语
人工智能YOLO机器视觉目标跟踪人工智能计算机视觉YOLO
走进YOLOv5、YOLOv8、YOLO11的data.yaml在计算机视觉领域的广袤星空中,目标检测无疑是一颗璀璨的明星,它广泛应用于自动驾驶、智能安防、工业检测、医疗影像分析等众多关键领域,发挥着不可或缺的作用。而YOLO系列算法,更是以其独特的“一次看全(YouOnlyLookOnce)”理念和卓越的性能,在目标检测领域中独树一帜,成为了众多研究者和开发者的首选工具。从最初的YOLOv1横空
- 深度解析:DETR的多尺度特征融合
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
"深度解析:DETR的多尺度特征融合"作者:禅与计算机程序设计艺术1.背景介绍1.1目标检测的挑战与传统方法的局限性目标检测是计算机视觉领域中的一个基本任务,其目标是识别图像或视频中所有感兴趣的目标,并确定它们的位置和类别。传统的目标检测方法,如FasterR-CNN和YOLO,通常依赖于预定义的锚框或候选区域来生成目标proposals。然而,这些方法存在一些固有的局限性:人工先验知识:锚框的设
- 基于transformer实现机器翻译(日译中)
小白_laughter
课程学习transformer机器翻译深度学习
文章目录一、引言二、使用编码器—解码器和注意力机制来实现机器翻译模型2.0含注意力机制的编码器—解码器2.1读取和预处理数据2.2含注意力机制的编码器—解码器2.3训练模型2.4预测不定长的序列2.5评价翻译结果三、使用Transformer架构和PyTorch深度学习库来实现的日中机器翻译模型3.1、导入必要的库3.2、数据集准备3.3、准备分词器3.4、构建TorchText词汇表对象,并将句
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的