java-opencv使用yolo2进行视频检测

使用opencv版本3.3.1进行视频实时视频流解析,读取每一帧图片信息使用opencv的DNN模块读取yolo2官网训练好的模型进行检测。

----------------------------------------------

package bp;


import java.awt.AlphaComposite;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.awt.image.BufferedImage;
import java.awt.image.DataBufferByte;


import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.WindowConstants;


import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.dnn.Dnn;
import org.opencv.dnn.Net;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.videoio.VideoCapture;


import image.CaptureBasic;
import image.Test2;


public class rycr  extends JPanel{
	private BufferedImage mImg;

	public void paintComponent(Graphics g) {
		if (mImg != null) {
			g.drawImage(mImg, 0, 0, mImg.getWidth(), mImg.getHeight(), this);
		}
	}
	
	
	public static void main(String[] args) {
		
		System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
		VideoCapture capture = new VideoCapture("123.mp4");
		Net net = Dnn.readNetFromDarknet("yolov2-tiny.cfg",
				"yolov2-tiny.weights");
		Mat capImg = new Mat();
		if (!capture.isOpened()) {
			return;
		} else {
			rycr rycr = new rycr();
			JFrame frame = new JFrame("camera1");
			frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
			rycr.addMouseListener(new MouseAdapter() {
				@Override
				public void mouseClicked(MouseEvent arg0) {
				}

				@Override
				public void mouseMoved(MouseEvent arg0) {
				}


				@Override
				public void mouseReleased(MouseEvent arg0) {
				}


				@Override
				public void mousePressed(MouseEvent arg0) {
				}
				@Override
				public void mouseExited(MouseEvent arg0) {
				}
				@Override
				public void mouseDragged(MouseEvent arg0) {
				}
			});
			frame.setContentPane(rycr);
			frame.setVisible(true);
			frame.setSize(800 + frame.getInsets().left + frame.getInsets().right,
					800 + frame.getInsets().top + frame.getInsets().bottom);
			
			
			while (true) {
				capture.read(capImg);
				BufferedImage testimg =bp.rycr.mat2BI(capImg);
				Rect  rect =new Rect(316, 149, 882 - 316, 717 - 149);//截取指定区域
				Mat im =new Mat(capImg,rect);
				if (im.empty()) {
				}
		        BufferedImage imges=  test(im,net);
		        if(imges!=null){
					rycr.mImg = imges;
		        }else{
		        		rycr.mImg = testimg;		        			        		
		        }
				rycr.repaint();
			}
		}
	}




	
	public static BufferedImage test(Mat im,Net net){
		Mat frame1 = new Mat();
		Size sz1 = new Size(im.cols(), im.rows());
		Imgproc.resize(im, frame1, sz1);
		Mat resized = new Mat();
		Size sz = new Size(416, 416);
		Imgproc.resize(im, resized, sz);
		float scale = 1.0F / 255.0F;
		Mat inputBlob = Dnn.blobFromImage(im, scale, sz, new Scalar(0), false, false);
		net.setInput(inputBlob, "data");
		Mat detectionMat = net.forward("detection_out");
		if (detectionMat.empty()) {
			System.out.println("No result");
		}
		for (int i = 0; i < detectionMat.rows(); i++) {
			int probability_index = 5;//有80特征 前4都没用 第5个开始
			int size = (int) (detectionMat.cols() * detectionMat.channels());
			float[] data = new float[size];
			detectionMat.get(i, 0, data);
			float confidence = -1;
			if (data[5] > 0.4) {
				System.out.println(data[5]);
				float x = data[0];
				float y = data[1];
				float width = data[2];
				float height = data[3];
				float xLeftBottom = (x - width / 2) * frame1.cols();
				float yLeftBottom = (y - height / 2) * frame1.rows();
				float xRightTop = (x + width / 2) * frame1.cols();
				float yRightTop = (y + height / 2) * frame1.rows();
				System.out.println("Confidence: " + confidence);
				Imgproc.rectangle(frame1, new Point(xLeftBottom, yLeftBottom), new Point(xRightTop, yRightTop),
						new Scalar(0, 255, 0), 3);
				return bp.rycr.mat2BI(frame1);
			}
		}
		return null;
	}
	
	
	public static BufferedImage mat2BI(Mat mat) {
		int dataSize = mat.cols() * mat.rows() * (int) mat.elemSize();
		byte[] data = new byte[dataSize];
		mat.get(0, 0, data);
		int type = mat.channels() == 1 ? BufferedImage.TYPE_BYTE_GRAY : BufferedImage.TYPE_3BYTE_BGR;
		if (type == BufferedImage.TYPE_3BYTE_BGR) {
			for (int i = 0; i < dataSize; i += 3) {
				byte blue = data[i + 0];
				data[i + 0] = data[i + 2];
				data[i + 2] = blue;
			}
		}
		BufferedImage image = new BufferedImage(mat.cols(), mat.rows(), type);
		image.getRaster().setDataElements(0, 0, mat.cols(), mat.rows(), data);
		return image;
	}






}


你可能感兴趣的:(人工智能)