浅谈最短路中的Dijskra算法

Dijkstra

一.算法背景

Dijkstra 算法(中文名:迪杰斯特拉算法)是由荷兰计算机科学家 Edsger Wybe Dijkstra 提出。该算法常用于路由算法或者作为其他图算法的一个子模块。举例来说,如果图中的顶点表示城市,而边上的权重表示城市间开车行经的距离,该算法可以用来找到两个城市之间的最短路径。

二.算法描述

算法思想:

设G=(V,E)是一个带权有向图,把图中顶点集合V分为两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),

第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径的的递增次序依次把第二组中的顶点加入S中。在加入的过程中,总保持从源点v到S中各个顶点的最短路径长度不大于从源点v到U中任何路径的长度。

此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前路径的最短长度。

算法步骤

a.初始时,只包括源点,即S = {v},v的距离为0。U包含除v以外的其他顶点,即:U ={其余顶点},若v与U中顶点u有边,则(u,v)为正常权值,若u不是v的出边邻接点,则(u,v)权值 ∞;

b..从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

执行动画

这里写图片描述

三:时间复杂度

设图的边数为 m,顶点数为 n。

Dijkstra 算法最简单的实现方法是用一个数组来存储所有顶点的dis[] 时间复杂度为O(n^2)

对于边数少于的稀疏图来说,我们可以用邻接表来更有效的实现该算法。同时需要将一个二叉堆或者斐波纳契堆用作优先队列来查找最小的顶点(Extract-Min)。当用到二叉堆的时候,算法所需的时间为,斐波纳契堆能稍微提高一些性能,让算法运行时间达到。然而,使用斐波纳契堆进行编程,常常会由于算法常数过大而导致速度没有显著提高。

四.缺陷

Dijkstra 算法有个巨大的缺陷,请考虑下面这幅图:

u→v间存在一条负权回路(所谓的负权回路,维基和百科并未收录其名词,但从网上的一致态度来看,其含义为:如果存在一个环(从某个点出发又回到自己的路径),而且这个环上所有权值之和是负数,那这就是一个负权环,也叫负权回路),那么只要无限次地走这条负权回路,便可以无限制地减少它的最短路径权值,这就变相地说明最短路径不存在。一个不存在最短路径的图,Dijkstra 算法无法检测出这个问题,其最后求解的dist[]也是错的。

下面就会使用另一个算法进行解决

五.算法实例

给出一个无向图

这里写图片描述
用Dijkstra算法找出以A为起点的单源最短路径步骤如下:

这里写图片描述

六.代码实现

c++

const int  MAXINT = 32767;
const int MAXNUM = 10;
int dist[MAXNUM];
int prev[MAXNUM];

int A[MAXUNM][MAXNUM];

void Dijkstra(int v0)
{
    bool S[MAXNUM];                                  // 判断是否已存入该点到S集合中
      int n=MAXNUM;
    for(int i=1; i<=n; ++i)
    {
        dist[i] = A[v0][i];
        S[i] = false;                                // 初始都未用过该点
        if(dist[i] == MAXINT)    
              prev[i] = -1;
        else 
              prev[i] = v0;
     }
     dist[v0] = 0;
     S[v0] = true;   
    for(int i=2; i<=n; i++)
    {
         int mindist = MAXINT;
         int u = v0;                               // 找出当前未使用的点j的dist[j]最小值
         for(int j=1; j<=n; ++j)
            if((!S[j]) && dist[j]// u保存当前邻接点中距离最小的点的号码 
                  mindist = dist[j];
            }
         S[u] = true; 
         for(int j=1; j<=n; j++)
             if((!S[j]) && A[u][j]if(dist[u] + A[u][j] < dist[j])     //在通过新加入的u点路径找到离v0点更短的路径  
                 {
                     dist[j] = dist[u] + A[u][j];    //更新dist 
                     prev[j] = u;                    //记录前驱顶点 
                  }
              }
     }
}

你可能感兴趣的:(浅谈系列)