编程风格
块级作用域
let 取代 var,在let和const之间,建议优先使用const,尤其是在全局环境,不应该设置变量,只应设置常量。
字符串
静态字符串一律使用单引号或反引号,不使用双引号。动态字符串使用反引号。
// good
const a = 'foobar';
const b = `foo${a}bar`;
const c = 'foobar';
解构赋值
使用数组成员对变量赋值时,优先使用解构赋值。
const arr = [1, 2, 3, 4];
// bad
const first = arr[0];
const second = arr[1];
// good
const [first, second] = arr;
函数的参数如果是对象的成员,优先使用解构赋值。
// bad
function getFullName(user) {
const firstName = user.firstName;
const lastName = user.lastName;
}
// good
function getFullName(obj) {
const { firstName, lastName } = obj;
}
// best
function getFullName({ firstName, lastName }) {
}
如果函数返回多个值,优先使用对象的解构赋值,而不是数组的解构赋值。这样便于以后添加返回值,以及更改返回值的顺序。
对象
单行定义的对象,最后一个成员不以逗号结尾。多行定义的对象,最后一个成员以逗号结尾。
// good
const a = { k1: v1, k2: v2 };
const b = {
k1: v1,
k2: v2,
};
对象尽量静态化,一旦定义,就不得随意添加新的属性。如果添加属性不可避免,要使用Object.assign方法。
// bad
const a = {};
a.x = 3;
// if reshape unavoidable
const a = {};
Object.assign(a, { x: 3 });
// good
const a = { x: null };
a.x = 3;
对象的属性和方法,尽量采用简洁表达法,这样易于描述和书写。
var ref = 'some value';
// bad
const atom = {
ref: ref,
value: 1,
addValue: function (value) {
return atom.value + value;
},
};
// good
const atom = {
ref,
value: 1,
addValue(value) {
return atom.value + value;
},
};
数组
使用扩展运算符(...)拷贝数组。使用Array.from方法,将类似数组的对象转为数组。
函数
立即执行函数可以写成箭头函数的形式。
(() => {
console.log('Welcome to the Internet.');
})();
那些需要使用函数表达式的场合,尽量用箭头函数代替
。因为这样更简洁,而且绑定了this。简单的、单行的、不会复用的函数,建议采用箭头函数。如果函数体较为复杂,行数较多,还是应该采用传统的函数写法。
不要在函数体内使用arguments变量,使用rest运算符(...)代替。使用默认值语法设置函数参数的默认值。
// bad
function concatenateAll() {
const args = Array.prototype.slice.call(arguments);
return args.join('');
}
// good
function concatenateAll(...args) {
return args.join('');
}
Map结构
只有模拟现实世界的实体对象时,才使用Object。如果只是需要key: value的数据结构,使用Map结构。因为Map有内建的遍历机制。
Class
总是用Class,取代需要prototype的操作。使用extends实现继承。
模块
坚持使用Module语法,使用import和export。如果模块只有一个输出值,就使用export default,如果模块有多个输出值,就不使用export default,export default与普通的export不要同时使用。
如果模块默认输出一个函数,函数名的首字母应该小写。如果模块默认输出一个对象,对象名的首字母应该大写。
ESLint的使用
ESLint是一个语法规则和代码风格的检查工具,可以用来保证写出语法正确、风格统一的代码。
二进制数组
二进制数组
(ArrayBuffer对象、TypedArray视图和DataView视图)是 JavaScript 操作二进制数据的一个接口。它并不是真正的数组,而是类似数组的对象
。
二进制数组由三类对象组成:ArrayBuffer对象、TypedArray视图和DataView视图。
ArrayBuffer对象代表原始的二进制数据,TypedArray视图用来读写简单类型的二进制数据,DataView视图用来读写复杂类型的二进制数据。
TypedArray视图支持的数据类型一共有9种(DataView视图支持除Uint8C以外的其他8种)。
很多浏览器操作的API,用到了二进制数组操作二进制数据,下面是其中的几个。
- File API
- XMLHttpRequest
- Fetch API
- Canvas
- WebSockets
ArrayBuffer对象
ArrayBuffer对象代表储存二进制数据的一段内存,它不能直接读写,只能通过视图(TypedArray视图和DataView视图)来读写,视图的作用是以指定格式解读二进制数据。
ArrayBuffer也是一个构造函数,可以分配一段可以存放数据的连续内存区域。
var buf = new ArrayBuffer(32);//生成了一段32字节的内存区域,每个字节的值默认都是0
//DataView视图的创建,需要提供ArrayBuffer对象实例作为参数。
var dataView = new DataView(buf);
dataView.getUint8(0) //0
TypedArray视图,与DataView视图的一个区别是,它不是一个构造函数,而是一组构造函数,代表不同的数据格式。
var buffer = new ArrayBuffer(12);
var x1 = new Int32Array(buffer);
x1[0] = 1;
var x2 = new Uint8Array(buffer);
x2[0] = 2;
x1[0] // 2
上面代码对同一段内存,分别建立两种视图:32位带符号整数(Int32Array构造函数)和8位不带符号整数(Uint8Array构造函数)。由于两个视图对应的是同一段内存,一个视图修改底层内存,会影响到另一个视图。
TypedArray视图的构造函数,除了接受ArrayBuffer实例作为参数,还可以接受普通数组作为参数,直接分配内存生成底层的ArrayBuffer实例,并同时完成对这段内存的赋值。
var typedArray = new Uint8Array([0,1,2]);
typedArray.length // 3
typedArray[0] = 5;
typedArray // [5, 1, 2]
ArrayBuffer.prototype.byteLength
ArrayBuffer.prototype.byteLength返回所分配的内存区域的字节长度。如果要分配的内存区域很大,有可能分配失败(因为没有那么多的连续空余内存),所以有必要检查是否分配成功。
var buffer = new ArrayBuffer(32);
if (buffer.byteLength === 32) {
// 成功
} else {
// 失败
}
ArrayBuffer.prototype.slice()
ArrayBuffer.prototype.slice()允许将内存区域的一部分,拷贝生成一个新的ArrayBuffer对象。slice方法接受两个参数,第一个参数表示拷贝开始的字节序号(含该字节),第二个参数表示拷贝截止的字节序号(不含该字节)。如果省略第二个参数,则默认到原ArrayBuffer对象的结尾。
除了slice方法,ArrayBuffer对象不提供任何直接读写内存的方法,只允许在其上方建立视图,然后通过视图读写。
ArrayBuffer.isView()
ArrayBuffer.isView() 返回一个布尔值,表示参数是否为TypedArray实例或DataView实例。
TypedArray视图
ArrayBuffer对象作为内存区域,可以存放多种类型的数据。同一段内存,不同数据有不同的解读方式,这就叫做“视图”(view)。ArrayBuffer有两种视图,一种是TypedArray视图,另一种是DataView视图。前者的数组成员都是同一个数据类型,后者的数组成员可以是不同的数据类型。
目前,TypedArray视图一共包括9种类型,每一种视图都是一种构造函数。
- Int8Array:8位有符号整数,长度1个字节。
- Uint8Array:8位无符号整数,长度1个字节。
- Uint8ClampedArray:8位无符号整数,长度1个字节,溢出处理不同。
- Int16Array:16位有符号整数,长度2个字节。
- Uint16Array:16位无符号整数,长度2个字节。
- Int32Array:32位有符号整数,长度4个字节。
- Uint32Array:32位无符号整数,长度4个字节。
- Float32Array:32位浮点数,长度4个字节。
- Float64Array:64位浮点数,长度8个字节
这9个构造函数生成的数组,统称为TypedArray视图。它们很像普通数组,都有length属性,都能用方括号运算符([])获取单个元素,所有数组的方法,在它们上面都能使用。
普通数组与TypedArray数组的差异:
- TypedArray数组的所有成员,都是同一种类型。
- TypedArray数组的成员是连续的,不会有空位。
- TypedArray数组成员的默认值为0。比如,new Array(10)返回一个普通数组,里面没有任何成员,只是10个空位;new Uint8Array(10)返回一个TypedArray数组,里面10个成员都是0。
- TypedArray数组只是一层视图,本身不储存数据,它的数据都储存在底层的ArrayBuffer对象之中,要获取底层对象必须使用buffer属性。
构造函数
构造函数有多种用法。
TypedArray(buffer, byteOffset=0, length?):
第一个参数(必需):视图对应的底层ArrayBuffer对象。第二个参数(可选):视图开始的字节序号,默认从0开始。第三个参数(可选):视图包含的数据个数,默认直到本段内存区域结束。
同一个ArrayBuffer对象之上,可以根据不同的数据类型,建立多个视图。
// 创建一个8字节的ArrayBuffer
var b = new ArrayBuffer(8);
// 创建一个指向b的Int32视图,开始于字节0,直到缓冲区的末尾
var v1 = new Int32Array(b);
// 创建一个指向b的Uint8视图,开始于字节2,直到缓冲区的末尾
var v2 = new Uint8Array(b, 2);
// 创建一个指向b的Int16视图,开始于字节2,长度为2
var v3 = new Int16Array(b, 2, 2);
上面代码在一段长度为8个字节的内存(b)之上,生成了三个视图:v1、v2和v3。v1、v2和v3是重叠的:v1[0]是一个32位整数,指向字节0~字节3;v2[0]是一个8位无符号整数,指向字节2;v3[0]是一个16位整数,指向字节2~字节3。只要任何一个视图对内存有所修改,就会在另外两个视图上反应出来。
byteOffset必须与所要建立的数据类型一致,否则会报错。
var buffer = new ArrayBuffer(8);
var i16 = new Int16Array(buffer, 1);
// Uncaught RangeError: start offset of Int16Array should be a multiple of 2
上面代码中,新生成一个8个字节的ArrayBuffer对象,然后在这个对象的第一个字节,建立带符号的16位整数视图,结果报错。因为,带符号的16位整数需要两个字节,所以byteOffset参数必须能够被2整除。
如果想从任意字节开始解读ArrayBuffer对象,必须使用DataView视图,因为TypedArray视图只提供9种固定的解读格式。
TypedArray(length):
视图还可以不通过ArrayBuffer对象,直接分配内存而生成。
var f64a = new Float64Array(8);//生成一个8个成员的Float64Array数组(共64字节)
f64a[0] = 10;
上面代码生成一个8个成员的Float64Array数组(共64字节),然后对成员赋值。这时,视图构造函数的参数就是成员的个数。可以看到,视图数组的赋值操作与普通数组的操作毫无两样。
TypedArray(typedArray):
TypedArray数组的构造函数,可以接受另一个TypedArray实例作为参数。
var typedArray = new Int8Array(new Float64Array(5));
//Int8Array构造函数接受一个Uint8Array实例作为参数。
typedArray.byteLength //5
上面代码中生成的新数组,只是复制了参数数组的值,对应的底层内存是不一样的。新数组会开辟一段新的内存储存数据,不会在原数组的内存之上建立视图。
如果想基于同一段内存,构造不同的视图,可以采用下面的写法。
var x = new Int8Array([1, 1]);
var y = new Int8Array(x.buffer);
x[0] // 1
y[0] // 1
x[0] = 2;
y[0] // 2
TypedArray(arrayLikeObject):
构造函数的参数也可以是一个普通数组,然后直接生成TypedArray实例。
var typedArray = new Uint8Array([1, 2, 3, 4]);
这时TypedArray视图会重新开辟内存,不会在原数组的内存上建立视图。
TypedArray数组也可以转换回普通数组。
var normalArray = Array.prototype.slice.call(typedArray);
普通数组的操作方法和属性,对TypedArray数组完全适用(除了concat方法,因为TypedArray数组没有concat方法)。另外,TypedArray数组与普通数组一样,部署了Iterator接口,所以可以被遍历。
字节序
字节序指的是数值在内存中的表示方式。
var buffer = new ArrayBuffer(16);
var int32View = new Int32Array(buffer);
for (var i = 0; i < int32View.length; i++) {
int32View[i] = i * 2;
}
//上面代码生成一个16字节的ArrayBuffer对象,然后在它的基础上,建立了一个32位整数的视图。由于每个32位整数占据4个字节,所以一共可以写入4个整数,依次为0,2,4,6。
//在这段数据上接着建立一个16位整数的视图,则可以读出完全不一样的结果。
var int16View = new Int16Array(buffer);
for (var i = 0; i < int16View.length; i++) {
console.log("Entry " + i + ": " + int16View[i]);
}
// Entry 0: 0
// Entry 1: 0
// Entry 2: 2
// Entry 3: 0
// Entry 4: 4
// Entry 5: 0
// Entry 6: 6
// Entry 7: 0
由于每个16位整数占据2个字节,所以整个ArrayBuffer对象现在分成8段。然后,由于x86体系的计算机都采用小端字节序(little endian),相对重要的字节排在后面的内存地址,相对不重要字节排在前面的内存地址,所以就得到了上面的结果。
比如,一个占据四个字节的16进制数0x12345678,决定其大小的最重要的字节是“12”,最不重要的是“78”。小端字节序将最不重要的字节排在前面,储存顺序就是78563412;大端字节序则完全相反,将最重要的字节排在前面,储存顺序就是12345678。目前,所有个人电脑几乎都是小端字节序,所以TypedArray数组内部也采用小端字节序读写数据。
与普通数组相比,TypedArray数组的最大优点就是可以直接操作内存,不需要数据类型转换,所以速度快得多。
BYTES_PER_ELEMENT属性
每一种视图的构造函数,都有一个BYTES_PER_ELEMENT属性,表示这种数据类型占据的字节数。
Int8Array.BYTES_PER_ELEMENT // 1
Uint8Array.BYTES_PER_ELEMENT // 1
Int16Array.BYTES_PER_ELEMENT // 2
Uint16Array.BYTES_PER_ELEMENT // 2
Int32Array.BYTES_PER_ELEMENT // 4
Uint32Array.BYTES_PER_ELEMENT // 4
Float32Array.BYTES_PER_ELEMENT // 4
Float64Array.BYTES_PER_ELEMENT // 8
这个属性在TypedArray实例上也能获取,即有TypedArray.prototype.BYTES_PER_ELEMENT。
ArrayBuffer与字符串的互相转换
ArrayBuffer转为字符串,或者字符串转为ArrayBuffer,有一个前提,即字符串的编码方法是确定的。假定字符串采用UTF-16编码(JavaScript的内部编码方式),可以自己编写转换函数。
// ArrayBuffer转为字符串,参数为ArrayBuffer对象
function ab2str(buf) {
return String.fromCharCode.apply(null, new Uint16Array(buf));
}
// 字符串转为ArrayBuffer对象,参数为字符串
function str2ab(str) {
var buf = new ArrayBuffer(str.length * 2); // 每个字符占用2个字节
var bufView = new Uint16Array(buf);
for (var i = 0, strLen = str.length; i < strLen; i++) {
bufView[i] = str.charCodeAt(i);
}
return buf;
}
溢出
不同的视图类型,所能容纳的数值范围是确定的。超出这个范围,就会出现溢出。比如,8位视图只能容纳一个8位的二进制值,如果放入一个9位的值,就会溢出。
TypedArray数组的溢出处理规则,简单来说,就是抛弃溢出的位,然后按照视图类型进行解释。
var uint8 = new Uint8Array(1);
uint8[0] = 256;
uint8[0] // 0
uint8[0] = -1;
uint8[0] // 255
上面代码中,uint8是一个8位视图,而256的二进制形式是一个9位的值100000000,这时就会发生溢出。根据规则,只会保留后8位,即00000000。uint8视图的解释规则是无符号的8位整数,所以00000000就是0。
负数在计算机内部采用“2的补码”表示,也就是说,将对应的正数值进行否运算,然后加1。比如,-1对应的正值是1,进行否运算以后,得到11111110,再加上1就是补码形式11111111。uint8按照无符号的8位整数解释11111111,返回结果就是255。
一个简单转换规则,可以这样表示。
正向溢出(overflow):当输入值大于当前数据类型的最大值,结果等于当前数据类型的最小值加上余值,再减去1。
负向溢出(underflow):当输入值小于当前数据类型的最小值,结果等于当前数据类型的最大值减去余值,再加上1。
上面的“余值”就是模运算的结果,即 JavaScript 里面的%运算符的结果。
var int8 = new Int8Array(1);
int8[0] = 128;
int8[0] // -128
int8[0] = -129;
int8[0] // 127
上面例子中,int8是一个带符号的8位整数视图,它的最大值是127,最小值是-128。输入值为128时,相当于正向溢出1,根据“最小值加上余值(128除以127的余值是1),再减去1”的规则,就会返回-128;输入值为-129时,相当于负向溢出1,根据“最大值减去余值(-129除以-128的余值是1),再加上1”的规则,就会返回127。
Uint8ClampedArray视图的溢出规则,与上面的规则不同。它规定,凡是发生正向溢出,该值一律等于当前数据类型的最大值,即255;如果发生负向溢出,该值一律等于当前数据类型的最小值,即0。
TypedArray.prototype.buffer
TypedArray.prototype.buffer返回整段内存区域对应的ArrayBuffer对象。该属性为只读属性。
var a = new Float32Array(64);
var b = new Uint8Array(a.buffer);
上面代码的a视图对象和b视图对象,对应同一个ArrayBuffer对象,即同一段内存。
TypedArray.prototype.byteLength,TypedArray.prototype.byteOffset
byteLength属性返回TypedArray数组占据的内存长度,单位为字节。byteOffset属性返回TypedArray数组从底层ArrayBuffer对象的哪个字节开始。这两个属性都是只读属性。
TypedArray.prototype.length
length属性表示TypedArray数组含有多少个成员。注意将byteLength属性和length属性区分,前者是字节总长度,后者是成员长度。
var a = new Int16Array(4);
a.length // 4
a.byteLength // 8
TypedArray.prototype.set()
TypedArray数组的set方法用于复制数组(普通数组或TypedArray数组),也就是将一段内容完全复制到另一段内存。set方法的第二个参数,表示从b对象的哪一个成员开始复制a对象。
var a = new Uint16Array(8);
var b = new Uint16Array(10);
b.set(a, 2)
//从b[2]开始,将复制a数组的内容到b数组,它是整段内存的复制,比一个个拷贝成员的那种复制快得多。
TypedArray.prototype.subarray()
subarray方法是对于TypedArray数组的一部分,再建立一个新的视图。方法的第一个参数是起始的成员序号,第二个参数是结束的成员序号(不含该成员),如果省略则包含剩余的全部成员。
TypedArray.prototype.slice()
TypeArray实例的slice方法,可以返回一个指定位置的新的TypedArray实例。slice方法的参数,表示原数组的具体位置,开始生成新数组。负值表示逆向的位置,即-1为倒数第一个位置,-2表示倒数第二个位置,以此类推。
TypedArray.of()
TypedArray数组的所有构造函数,都有一个静态方法of,用于将参数转为一个TypedArray实例。
下面三种方法都会生成同样一个TypedArray数组。
// 方法一
let tarr = new Uint8Array([1,2,3]);
// 方法二
let tarr = Uint8Array.of(1,2,3);
// 方法三
let tarr = new Uint8Array(3);
tarr[0] = 1;
tarr[1] = 2;
tarr[2] = 3;
TypedArray.from()
静态方法from接受一个可遍历的数据结构(比如数组)作为参数,返回一个基于这个结构的TypedArray实例。
from方法还可以接受一个函数,作为第二个参数,用来对每个元素进行遍历,功能类似map方法。
Int8Array.of(127, 126, 125).map(x => 2 * x)
// Int8Array [ -2, -4, -6 ]
Int16Array.from(Int8Array.of(127, 126, 125), x => 2 * x)
// Int16Array [ 254, 252, 250 ]
上面的例子中,from方法没有发生溢出,这说明遍历不是针对原来的8位整数数组。也就是说,from会将第一个参数指定的TypedArray数组,拷贝到另一段内存之中,处理之后再将结果转成指定的数组格式。
复合视图
由于视图的构造函数可以指定起始位置和长度,所以在同一段内存之中,可以依次存放不同类型的数据,这叫做“复合视图”。
var buffer = new ArrayBuffer(24);
var idView = new Uint32Array(buffer, 0, 1);
var usernameView = new Uint8Array(buffer, 4, 16);
var amountDueView = new Float32Array(buffer, 20, 1);
上面代码将一个24字节长度的ArrayBuffer对象,分成三个部分:
- 字节0到字节3:1个32位无符号整数
- 字节4到字节19:16个8位整数
- 字节20到字节23:1个32位浮点数
DataView视图
一段数据包括多种类型可通过建立ArrayBuffer对象的复合视图或DataView视图进行操作。
ArrayBuffer对象的各种TypedArray视图,是用来向网卡、声卡之类的本机设备传送数据,所以使用本机的字节序就可以了;而DataView视图的设计目的,是用来处理网络设备传来的数据,所以大端字节序或小端字节序是可以自行设定的。
DataView视图本身也是构造函数,接受一个ArrayBuffer对象作为参数,生成视图。
DataView(ArrayBuffer buffer [, 字节起始位置 [, 长度]]);
DataView实例有以下属性:
- DataView.prototype.buffer:返回对应的ArrayBuffer对象。
- DataView.prototype.byteLength:返回占据的内存字节长度。
- DataView.prototype.byteOffset:返回当前视图从对应的ArrayBuffer对象的哪个字节开始。
DataView实例提供8个方法读取内存:
这一系列get方法的参数都是一个字节序号(不能是负数,否则会报错),表示从哪个字节开始读取
- getInt8:读取1个字节,返回一个8位整数。
- getUint8:读取1个字节,返回一个无符号的8位整数。
- getInt16:读取2个字节,返回一个16位整数。
- getUint16:读取2个字节,返回一个无符号的16位整数。
- getInt32:读取4个字节,返回一个32位整数。
- getUint32:读取4个字节,返回一个无符号的32位整数。
- getFloat32:读取4个字节,返回一个32位浮点数。
- getFloat64:读取8个字节,返回一个64位浮点数
var buffer = new ArrayBuffer(24);
var dv = new DataView(buffer);
// 从第1个字节读取一个8位无符号整数
var v1 = dv.getUint8(0);
// 从第2个字节读取一个16位无符号整数
var v2 = dv.getUint16(1);
// 从第4个字节读取一个16位无符号整数
var v3 = dv.getUint16(3);
如果一次读取两个或两个以上字节,就必须明确数据的存储方式,到底是小端字节序还是大端字节序。默认情况下,DataView的get方法使用大端字节序解读数据,如果需要使用小端字节序解读,必须在get方法的第二个参数指定true。
DataView视图提供8个方法写入内存:
这一系列set方法,接受两个参数,第一个参数是字节序号,表示从哪个字节开始写入,第二个参数为写入的数据。对于那些写入两个或两个以上字节的方法,需要指定第三个参数,false或者undefined表示使用大端字节序写入,true表示使用小端字节序写入。
- setInt8:写入1个字节的8位整数。
- setUint8:写入1个字节的8位无符号整数。
- setInt16:写入2个字节的16位整数。
- setUint16:写入2个字节的16位无符号整数。
- setInt32:写入4个字节的32位整数。
- setUint32:写入4个字节的32位无符号整数。
- setFloat32:写入4个字节的32位浮点数。
- setFloat64:写入8个字节的64位浮点数。
二进制数组的应用
AJAX
传统上,服务器通过AJAX操作只能返回文本数据,即responseType属性默认为text。XMLHttpRequest第二版XHR2允许服务器返回二进制数据,这时分成两种情况。如果明确知道返回的二进制数据类型,可以把返回类型(responseType)设为arraybuffer;如果不知道,就设为blob。
Canvas
网页Canvas元素输出的二进制像素数据,就是TypedArray数组。
var canvas = document.getElementById('myCanvas');
var ctx = canvas.getContext('2d');
var imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
var uint8ClampedArray = imageData.data;
需要注意的是,上面代码的uint8ClampedArray虽然是一个TypedArray数组,但是它的视图类型是一种针对Canvas元素的专有类型Uint8ClampedArray。这个视图类型的特点,就是专门针对颜色,把每个字节解读为无符号的8位整数,即只能取值0~255,而且发生运算的时候自动过滤高位溢出。这为图像处理带来了巨大的方便。
WebSocket
WebSocket可以通过ArrayBuffer,发送或接收二进制数据。
var socket = new WebSocket('ws://127.0.0.1:8081');
socket.binaryType = 'arraybuffer';
// Wait until socket is open
socket.addEventListener('open', function (event) {
// Send binary data
var typedArray = new Uint8Array(4);
socket.send(typedArray.buffer);
});
// Receive binary data
socket.addEventListener('message', function (event) {
var arrayBuffer = event.data;
// ···
});
Fetch API
Fetch API取回的数据,就是ArrayBuffer对象。
fetch(url)
.then(function(request){
return request.arrayBuffer()
})
.then(function(arrayBuffer){
// ...
});
File API
如果知道一个文件的二进制数据类型,也可以将这个文件读取为ArrayBuffer对象。
var fileInput = document.getElementById('fileInput');
var file = fileInput.files[0];
var reader = new FileReader();
reader.readAsArrayBuffer(file);
reader.onload = function () {
var arrayBuffer = reader.result;
// ···
};
SharedArrayBuffer
JavaScript 是单线程的,web worker 引入了多进程,每个进程的数据都是隔离的,通过postMessage()通信,即通信的数据是复制的。如果数据量比较大,这种通信的效率显然比较低。
//主进程新建了一个 Worker 进程
var w = new Worker('myworker.js');
//主进程通过w.postMessage向 Worker 进程发消息,同时通过message事件监听 Worker 进程的回应。
w.postMessage('hi');
w.onmessage = function (ev) {
console.log(ev.data);
}
//Worker 进程也是通过监听message事件,来获取主进程发来的消息,并作出反应。
onmessage = function (ev) {
console.log(ev.data);
postMessage('ho');
}
主进程与 Worker 进程之间,可以传送各种数据,不仅仅是字符串,还可以传送二进制数据。若有大量数据要传送,留出一块内存区域,主进程与 Worker 进程共享,两方都可以读写,那么就会大大提高效率。
ES2017 引入SharedArrayBuffer,允许多个 Worker 进程与主进程共享内存数据。SharedArrayBuffer的 API 与ArrayBuffer一模一样,唯一的区别是后者无法共享。
// 新建 1KB 共享内存
var sharedBuffer = new SharedArrayBuffer(1024);
// 主窗口发送数据
w.postMessage(sharedBuffer);
// 本地写入数据
const sharedArray = new Int32Array(sharedBuffer);
共享内存也可以在 Worker 进程创建,发给主进程。SharedArrayBuffer本身是无法读写,必须在上面建立视图,然后通过视图读写。
Worker 进程直接改写共享内存是不正确的。有两个原因,一是可能发生两个进程同时改写该地址,二是改写以后无法同步到其他 Worker 进程。所以,必须使用Atomics.add()方法进行改写。SharedArrayBuffer API 提供了Atomics对象,保证所有共享内存的操作都是“原子性”的,并且可以在所有进程内同步。
Atomics对象有以下方法:
- Atomics.load(array, index):返回array[index]的值。
- Atomics.store(array, index, value):设置array[index]的值,返回这个值。
- Atomics.compareExchange(array, index, oldval, newval):如果array[index]等于oldval,就写入newval,返回oldval。
- Atomics.exchange(array, index, value):设置array[index]的值,返回旧的值。
Atomics.add(array, index, value):将value加到array[index],返回array[index]旧的值。 - Atomics.sub(array, index, value):将value从array[index]减去,返回array[index]旧的值。
- Atomics.and(array, index, value):将value与array[index]进行位运算and,放入array[index],并返回旧的值。
- Atomics.or(array, index, value):将value与array[index]进行位运算or,放入array[index],并返回旧的值。
- Atomics.xor(array, index, value):将vaule与array[index]进行位运算xor,放入array[index],并返回旧的值。
- Atomics.wait(array, index, value, timeout):如果array[index]等于value,进程就进入休眠状态,必须通过Atomics.wake()唤醒。timeout指定多少毫秒之后,进入休眠。返回值是三个字符串(ok、not-equal、timed-out)中的一个。
- Atomics.wake(array, index, count):唤醒指定数目在某个位置休眠的进程。
- Atomics.isLockFree(size):返回一个布尔值,表示Atomics对象是否可以处理某个size的内存锁定。如果返回false,应用程序就需要自己来实现锁定。
SIMD
SIMD(发音/sim-dee/)是“Single Instruction/Multiple Data”的缩写,意为“单指令,多数据”。它是 JavaScript 操作 CPU 对应指令的接口。与它相对的是 SISD(“Single Instruction/Single Data”),即“单指令,单数据”。
SIMD 的含义是使用一个指令,完成多个数据的运算;SISD 的含义是使用一个指令,完成单个数据的运算,这是 JavaScript 的默认运算模式。显而易见,SIMD 的执行效率要高于 SISD,所以被广泛用于3D图形运算、物理模拟等运算量超大的项目之中。
var a = SIMD.Float32x4(1, 2, 3, 4);
var b = SIMD.Float32x4(5, 6, 7, 8);
var c = SIMD.Float32x4.add(a, b); // Float32x4[6, 8, 10, 12]
上面代码之中,数组a和b的四个成员的各自相加,只用一条指令就完成了。
一次 SIMD 运算,可以处理多个数据,这些数据被称为“通道”(lane)。上面代码中,一次运算了四个数据,因此就是四个通道。
SIMD 通常用于矢量运算。
数据类型
SIMD 提供12种数据类型,总长度都是128个二进制位。
- Float32x4:四个32位浮点数
- Float64x2:两个64位浮点数
- Int32x4:四个32位整数
- Int16x8:八个16位整数
- Int8x16:十六个8位整数
- Uint32x4:四个无符号的32位整数
- Uint16x8:八个无符号的16位整数
- Uint8x16:十六个无符号的8位整数
- Bool32x4:四个32位布尔值
- Bool16x8:八个16位布尔值
- Bool8x16:十六个8位布尔值
- Bool64x2:两个64位布尔值
每种数据类型被x符号分隔成两部分,后面的部分表示通道数,前面的部分表示每个通道的宽度和类型。比如,Float32x4就表示这个值有4个通道,每个通道是一个32位浮点数。
每个通道之中,可以放置四种数据:
- 浮点数(float,比如1.0)
- 带符号的整数(Int,比如-1)
- 无符号的整数(Uint,比如1)
- 布尔值(Bool,包含true和false两种值)
每种 SIMD 的数据类型都是一个函数方法,可以传入参数,生成对应的值。注意,这些数据类型方法都不是构造函数,前面不能加new,否则会报错。
var a = SIMD.Float32x4(1.0, 2.0, 3.0, 4.0);
//变量a就是一个128位、包含四个32位浮点数(即四个通道)的值。
静态方法:数学运算
每种数据类型都有一系列运算符,支持基本的数学运算。
SIMD.%type%.abs(),SIMD.%type%.neg()
abs方法接受一个SIMD值作为参数,将它的每个通道都转成绝对值,作为一个新的SIMD值返回。
var a = SIMD.Float32x4(-1, -2, 0, NaN);
SIMD.Float32x4.abs(a)
// Float32x4[1, 2, 0, NaN]
neg方法接受一个SIMD值作为参数,将它的每个通道都转成负值,作为一个新的SIMD值返回。
var a = SIMD.Float32x4(-1, -2, 3, 0);
SIMD.Float32x4.neg(a)
// Float32x4[1, 2, -3, -0]
SIMD.%type%.add(),SIMD.%type%.addSaturate()
add方法接受两个SIMD值作为参数,将它们的每个通道相加,作为一个新的SIMD值返回。
addSaturate方法跟add方法的作用相同,都是两个通道相加,但是溢出的处理不一致。对于add方法,如果两个值相加发生溢出,溢出的二进制位会被丢弃; addSaturate方法则是返回该数据类型的最大值。
注意,Uint32x4和Int32x4这两种数据类型没有addSaturate方法。
SIMD.%type%.sub(),SIMD.%type%.subSaturate()
sub方法接受两个SIMD值作为参数,将它们的每个通道相减,作为一个新的SIMD值返回。
var a = SIMD.Float32x4(-1, -2, 3, 4);
var b = SIMD.Float32x4(3, 3, 3, 3);
SIMD.Float32x4.sub(a, b)
// Float32x4[-4, -5, 0, 1]
subSaturate方法跟sub方法的作用相同,都是两个通道相减,但是溢出的处理不一致。对于sub方法,如果两个值相减发生溢出,溢出的二进制位会被丢弃; subSaturate方法则是返回该数据类型的最小值。
SIMD.%type%.mul(),SIMD.%type%.div(),SIMD.%type%.sqrt()
mul方法接受两个SIMD值作为参数,将它们的每个通道相乘,作为一个新的SIMD值返回。
div方法接受两个SIMD值作为参数,将它们的每个通道相除,作为一个新的SIMD值返回。
sqrt方法接受一个SIMD值作为参数,求出每个通道的平方根,作为一个新的SIMD值返回。
SIMD.%FloatType%.reciprocalApproximation(),SIMD.%type%.reciprocalSqrtApproximation()
reciprocalApproximation方法接受一个SIMD值作为参数,求出每个通道的倒数(1 / x),作为一个新的SIMD值返回。
reciprocalSqrtApproximation方法接受一个SIMD值作为参数,求出每个通道的平方根的倒数(1 / (x^0.5)),作为一个新的SIMD值返回。
注意,只有浮点数的数据类型才有这两个方法。
SIMD.%IntegerType%.shiftLeftByScalar()
shiftLeftByScalar方法接受一个SIMD值作为参数,然后将每个通道的值左移指定的位数,作为一个新的SIMD值返回。如果左移后,新的值超出了当前数据类型的位数,溢出的部分会被丢弃。
注意,只有整数的数据类型才有这个方法。
SIMD.%IntegerType%.shiftRightByScalar()
shiftRightByScalar方法接受一个SIMD值作为参数,然后将每个通道的值右移指定的位数,返回一个新的SIMD值。
如果原来通道的值是带符号的值,则符号位保持不变,不受右移影响。如果是不带符号位的值,则右移后头部会补0。
静态方法:通道处理
SIMD.%type%.check()
check方法用于检查一个值是否为当前类型的SIMD值。如果是的,就返回这个值,否则就报错。
SIMD.%type%.extractLane(),SIMD.%type%.replaceLane()
extractLane方法用于返回给定通道的值。它接受两个参数,分别是SIMD值和通道编号。
var t = SIMD.Float32x4(1, 2, 3, 4);
SIMD.Float32x4.extractLane(t, 2) // 3
replaceLane方法用于替换指定通道的值,并返回一个新的SIMD值。它接受三个参数,分别是原来的SIMD值、通道编号和新的通道值。
SIMD.%type%.load()
load方法用于从二进制数组读入数据,生成一个新的SIMD值。load方法接受两个参数:一个二进制数组和开始读取的位置(从0开始)。如果位置不合法(比如-1或者超出二进制数组的大小),就会抛出一个错误。
var b = new Int32Array([1,2,3,4,5,6,7,8]);
SIMD.Int32x4.load(a, 2);
// Int32x4[3, 4, 5, 6]
这个方法还有三个变种load1()、load2()、load3(),表示从指定位置开始,只加载一个通道、二个通道、三个通道的值。
SIMD.%type%.store()
store方法用于将一个SIMD值,写入一个二进制数组。它接受三个参数,分别是二进制数组、开始写入的数组位置、SIMD值。它返回写入值以后的二进制数组。
var t2 = new Int32Array(8);
var v2 = SIMD.Int32x4(1, 2, 3, 4);
SIMD.Int32x4.store(t2, 2, v2)
// Int32Array[0, 0, 1, 2, 3, 4, 0, 0]
这个方法还有三个变种store1()、store2()和store3(),表示只写入一个通道、二个通道和三个通道的值。
SIMD.%type%.splat()
splat方法返回一个新的SIMD值,该值的所有通道都会设成同一个预先给定的值。如果省略参数,所有整数型的SIMD值都会设定0,浮点型的SIMD值都会设成NaN。
SIMD.%type%.swizzle()
swizzle方法返回一个新的SIMD值,重新排列原有的SIMD值的通道顺序。swizzle方法的第一个参数是原有的SIMD值,后面的参数对应将要返回的SIMD值的四个通道。
var t = SIMD.Float32x4(1, 2, 3, 4);
SIMD.Float32x4.swizzle(t, 1, 2, 0, 3);
// Float32x4[2,3,1,4]
上面代码中,后面的参数的意思是新的SIMD的四个通道,依次是原来SIMD值的1号通道、2号通道、0号通道、3号通道。由于SIMD值最多可以有16个通道,所以swizzle方法除了第一个参数以外,最多还可以接受16个参数。
SIMD.%type%.shuffle()
shuffle方法从两个SIMD值之中取出指定通道,返回一个新的SIMD值。
var a = SIMD.Float32x4(1, 2, 3, 4);
var b = SIMD.Float32x4(5, 6, 7, 8);
SIMD.Float32x4.shuffle(a, b, 1, 5, 7, 2);
// Float32x4[2, 6, 8, 3]
上面代码中,a和b一共有8个通道,依次编号为0到7。shuffle根据编号,取出相应的通道,返回一个新的SIMD值。
静态方法:比较运算
SIMD.%type%.equal(),SIMD.%type%.notEqual()
equal方法用来比较两个SIMD值a和b的每一个通道,根据两者是否精确相等(a === b),得到一个布尔值。最后,所有通道的比较结果,组成一个新的SIMD值,作为掩码返回。notEqual方法则是比较两个通道是否不相等(a !== b)。
var a = SIMD.Float32x4(1, 2, 3, 9);
var b = SIMD.Float32x4(1, 4, 7, 9);
SIMD.Float32x4.equal(a,b)
// Bool32x4[true, false, false, true]
SIMD.Float32x4.notEqual(a,b);
// Bool32x4[false, true, true, false]
SIMD.%type%.greaterThan(),SIMD.%type%.greaterThanOrEqual()
greatThan方法用来比较两个SIMD值a和b的每一个通道,如果在该通道中,a较大就得到true,否则得到false。最后,所有通道的比较结果,组成一个新的SIMD值,作为掩码返回。greaterThanOrEqual则是比较a是否大于等于b。
SIMD.%type%.lessThan(),SIMD.%type%.lessThanOrEqual()
lessThan方法用来比较两个SIMD值a和b的每一个通道,如果在该通道中,a较小就得到true,否则得到false。最后,所有通道的比较结果,会组成一个新的SIMD值,作为掩码返回。lessThanOrEqual方法则是比较a是否小于等于b。
SIMD.%type%.select()
select方法接受掩码和两个SIMD值作为参数,返回一个新生成的SIMD值。当某个通道对应的掩码为true时,会选择第一个SIMD值的对应通道,否则选择第二个SIMD值的对应通道。这个方法通常与比较运算符结合使用。
var a = SIMD.Float32x4(0, 12, 3, 4);
var b = SIMD.Float32x4(0, 6, 7, 50);
var mask = SIMD.Float32x4.lessThan(a,b);
// Bool32x4[false, false, true, true]
var result = SIMD.Float32x4.select(mask, a, b);
// Float32x4[0, 6, 3, 4]
上面代码中,先通过lessThan方法生成一个掩码,然后通过select方法生成一个由每个通道的较小值组成的新的SIMD值。
SIMD.%BooleanType%.allTrue(),SIMD.%BooleanType%.anyTrue()
allTrue方法接受一个SIMD值作为参数,然后返回一个布尔值,表示该SIMD值的所有通道是否都为true。anyTrue方法则是只要有一个通道为true,就返回true,否则返回false。
注意,只有四种布尔值数据类型(Bool32x4、Bool16x8、Bool8x16、Bool64x2)才有这两个方法。
SIMD.%type%.min(),SIMD.%type%.minNum()
min方法接受两个SIMD值作为参数,将两者的对应通道的较小值,组成一个新的SIMD值返回。如果有一个通道的值是NaN,则会优先返回NaN。minNum方法与min的作用一模一样,唯一的区别是如果有一个通道的值是NaN,则会优先返回另一个通道的值。
SIMD.%type%.max(),SIMD.%type%.maxNum()
max方法接受两个SIMD值作为参数,将两者的对应通道的较大值,组成一个新的SIMD值返回。如果有一个通道的值是NaN,则会优先返回NaN。maxNum方法与max的作用一模一样,唯一的区别是如果有一个通道的值是NaN,则会优先返回另一个通道的值。
静态方法:位运算
SIMD.%type%.and(),SIMD.%type%.or(),SIMD.%type%.xor(),SIMD.%type%.not()
and方法接受两个SIMD值作为参数,返回两者对应的通道进行二进制AND运算(&)后得到的新的SIMD值。
or方法接受两个SIMD值作为参数,返回两者对应的通道进行二进制OR运算(|)后得到的新的SIMD值。
xor方法接受两个SIMD值作为参数,返回两者对应的通道进行二进制”异或“运算(^)后得到的新的SIMD值。
not方法接受一个SIMD值作为参数,返回每个通道进行二进制”否“运算(~)后得到的新的SIMD值。
静态方法:数据类型转换
SIMD提供以下方法,用来将一种数据类型转为另一种数据类型:
- SIMD.%type%.fromFloat32x4()
- SIMD.%type%.fromFloat32x4Bits()
- SIMD.%type%.fromFloat64x2Bits()
- SIMD.%type%.fromInt32x4()
- SIMD.%type%.fromInt32x4Bits()
- SIMD.%type%.fromInt16x8Bits()
- SIMD.%type%.fromInt8x16Bits()
- SIMD.%type%.fromUint32x4()
- SIMD.%type%.fromUint32x4Bits()
- SIMD.%type%.fromUint16x8Bits()
- SIMD.%type%.fromUint8x16Bits()
带有Bits后缀的方法,会原封不动地将二进制位拷贝到新的数据类型;不带后缀的方法,则会进行数据类型转换。
var t = SIMD.Float32x4(1.0, 2.0, 3.0, 4.0);
SIMD.Int32x4.fromFloat32x4(t);
// Int32x4[1, 2, 3, 4]
SIMD.Int32x4.fromFloat32x4Bits(t);
// Int32x4[1065353216, 1073741824, 1077936128, 1082130432]
上面代码中,fromFloat32x4是将浮点数转为整数,然后存入新的数据类型;fromFloat32x4Bits则是将二进制位原封不动地拷贝进入新的数据类型,然后进行解读。
Bits后缀的方法,还可以用于通道数目不对等的拷贝(原通道的数据大小可小于目标通道的最大宽度)。如果数据转换时,原通道的数据大小,超过了目标通道的最大宽度,就会报错。
实例方法
SIMD.%type%.prototype.toString()返回一个SIMD值的字符串形式。
var a = SIMD.Float32x4(11, 22, 33, 44);
a.toString() // "SIMD.Float32x4(11, 22, 33, 44)"
参考自:ECMAScript 6 入门