- PyTorch学习(13):PyTorch的张量相乘(torch.matmul)
赛先生.AI
PyTorchpytorch
PyTorch学习(1):torch.meshgrid的使用-CSDN博客PyTorch学习(2):torch.device-CSDN博客PyTorch学习(9):torch.topk-CSDN博客PyTorch学习(10):torch.where-CSDN博客PyTorch学习(11):PyTorch的形状变换(view,reshape)与维度变换(transpose,permute)-CSDN
- PyTorch实现CIFAR-10分类代码
曹勖之
PyTorch学习之路深度学习pytorch
这篇是PyTorch学习之路第七篇,用于记录PyTorch实现CIFAR-10分类代码(书上的代码有好多冗余)目录完整代码(还未训练)完整代码(已训练,直接载入模型)下面实例数据集位于:C:\Users\22130\Learning_Pytorch\dataset完整代码(还未训练)importtorchimporttorchvisionimporttorchvision.transformsas
- PyTorch学习笔记之基础函数篇(四)
熊猫Devin
深度学习之PyTorchpytorch学习笔记
文章目录2.8torch.logspace函数讲解2.9torch.ones函数2.10torch.rand函数2.11torch.randn函数2.12torch.zeros函数2.8torch.logspace函数讲解torch.logspace函数在PyTorch中用于生成一个在对数尺度上均匀分布的张量(tensor)。这意味着张量中的元素是按照对数间隔排列的,而不是线性间隔。这对于创建在数
- 深入浅出PyTorch学习网址
今天是学习的一天
人工智能
https://datawhalechina.github.io/thorough-pytorch/
- Pytorch学习记录-接近人类水平的GEC(使用混合机器翻译模型)
我的昵称违规了
五月第二周要结束了,接下来的三个月主要是文献阅读,准备8、9月的开题报告,技术类的文献集中在GEC和Textmaching的应用方面,读完之后找demo复现,然后应用。理论方面的论文也都是英文的8.NearHuman-LevelPerformanceinGrammaticalErrorCorrectionwithHybridMachineTranslation昨天一天没看论文,发现我文献阅读速度太
- Pytorch学习准备_Pycharm及Jupyter使用
写点什么呢
学习记录pytorch学习人工智能pythonpycharm
已经创建环境pytorch01,可参考http://t.csdnimg.cn/KwJvh一.pytorch环境查看打开AnacondaPrompt进入pytorch01环境condaactivatepytorch01列出这个环境下的工具包piplist二.Pycharm打开,创建新项目2.1选择“现有指示器"(笔者使用此法未成功,使用的是2.2)找到你自己的pytorch位置笔者如图可以看到解释器
- Pytorch学习01_加载数据初认识
写点什么呢
pytorch学习人工智能pythonpycharmpipipython
一.Dataset新建py文件fromtorch.utils.dataimportDataset可以按住”Ctrl“,鼠标左键点击Dataset,可以打开Dataset的定义及其内部函数二.编写引用cv2模块终端运行pipinstallopencv-python然后就可以引用cv2模块importcv2引用ImagefromPILimportImage数据集链接https://pan.baidu.
- Pytorch学习02_TensorBoard使用01
写点什么呢
学习记录pytorch学习人工智能pythonpycharm
更换编辑器找到自己的Anaconda安装路径下envs\pytorch01中的oython.exe,pytorch01是笔者自己创建的pytorch环境名选择好后,点击确定点击“应用”,再点击“确定”在pytorch环境下安装tensorboardpipinstallpytorch安装结束writer.add_scalar("y=x",i,i)运行如下内容fromtorch.utils.tenso
- Pytorch学习03_TensorBoard使用02
写点什么呢
学习记录pytorch学习人工智能pycharmpython
Opencv读取图片,获得numpy型数据类型复制图片的相对路径目前这种type不适用,考虑用numpy类型安装opencv,在pytorch环境下pipinstallopencv-python导入numpyimportnumpyasnp将PIL类型的img转换为NumPy数组img_array=np.array(img)HWC三通道H:高度W:宽度C:通道fromtorch.utils.tens
- 【pytorch学习】关于torch.nn.MaxPool2d和torch.nn.functional.max_pool2d
你好,我老婆不吃香菜
pytorch深度学习
两者之间的区别与联系首先给出结论,torch.nn.MaxPool2d和torch.nn.functional.max_pool2d两者本质上是一样的。具体可以参考torch.nn.MaxPool2d的源代码,核心源代码如下所示:from..importfunctionalasFclassMaxPool2d(_MaxPoolNd):kernel_size:_size_2_tstride:_size
- Pytorch学习记录-GEC语法纠错
我的昵称违规了
Pytorch学习记录-GEC语法纠错01五月第一周要结束了,接下来的三个月主要是文献阅读,准备8、9月的开题报告,技术类的文献集中在GEC和Textmaching的应用方面,读完之后找demo复现,然后应用。理论方面的论文也都是英文的,国内这块做的真的不行啊……学习计划GEC概念AlibabaatIJCNLP-2017Task1:EmbeddingGrammaticalFeaturesintoL
- PyTorch(超详细)部署与激活 举起Python火炬,点亮智慧人生【Windows版】
心安成长
PyTorchpythonpytorchwindows
AI时代,我们不仅要学习Python,同时机器学习,深度学习利器也要逐步掌握,再次开始Pytorch学习教程记录。PyTorch是一个流行的开源深度学习框架,它可以用于构建、训练和部署各种机器学习和深度学习模型。PyTorch可以用于以下领域:计算机视觉:图像分类、目标检测、图像分割、人脸识别等。自然语言处理:机器翻译、文本分类、情感分析、问答系统等。语音处理:语音识别、语音合成、说话人识别等。生
- Pytorch学习记录-卷积Seq2Seq(模型训练)
我的昵称违规了
Pytorch学习记录-torchtext和Pytorch的实例50.PyTorchSeq2Seq项目介绍在完成基本的torchtext之后,找到了这个教程,《基于Pytorch和torchtext来理解和实现seq2seq模型》。这个项目主要包括了6个子项目使用神经网络训练Seq2Seq使用RNNencoder-decoder训练短语表示用于统计机器翻译使用共同学习完成NMT的堆砌和翻译打包填充
- Python-Pytorch学习记录
yt_0618
学习
目录1.python-pycharm下载安装2.VSCode下载安装3.MATLAB下载安装4.pytorch一条龙下载安装环境配置1.python-pycharm下载安装pycharm从安装到全副武装,学起来才嗖嗖的快,图片超多,因为过度详细!_pycharm下载和环境配置-CSDN博客https://chuanchuan.blog.csdn.net/article/details/119934
- pytorch学习笔记(2)--Tensor
ToToBe
pytorch笔记1024程序员节
系列文章pytorch学习笔记(1)–QUICKSTARTpytorch学习笔记(2)–Tensorpytorch学习笔记(3)–数据集与数据导入pytorch学习笔记(4)–创建模型(BuildModel)pytorch学习笔记(5)–Autograd文章目录系列文章Tensor(张量)1.初始化张量2.张量的属性3.张量的操作1.类似numpy的索引和切片2.拼接3.算数操作4.单元素张量5.
- PyTorch学习笔记(三):softmax回归
FriendshipT
PyTorch学习笔记pytorch回归深度学习softmax
PyTorch学习笔记(三):softmax回归softmax回归分类问题softmax回归模型单样本分类的矢量计算表达式小批量样本分类的矢量计算表达式交叉熵损失函数模型预测及评价小结Torchvision获取数据集读取小批量PyTorch从零开始实现softmax获取和读取数据初始化模型参数实现softmax运算定义模型定义损失函数定义优化算法计算分类准确率训练模型预测小结PyTorch模块实现
- PyTorch学习:加载模型和参数
TravelingLight77
DLPytorchpytorch深度学习神经网络
1.直接加载模型和参数加载别人训练好的模型:#保存和加载整个模型torch.save(model_object,'resnet.pth')model=torch.load('resnet.pth')2.分别加载网络的结构和参数#将my_resnet模型储存为my_resnet.pthtorch.save(my_resnet.state_dict(),"my_resnet.pth")#加载resne
- PyTorch学习笔记1
zt_d918
训练过程importtorch#batch_size,input_dimension,hidden_dimension,output_dimensionN,D_in,H,D_out=64,1000,100,10#模拟一个训练集x=torch.randn(N,D_in)y=torch.randn(N,D_out)#模型定义有多种方式,这里不提model#loss函数定义loss_fn=torch.n
- 第二十九周:文献阅读笔记(ResMLP)+ pytorch学习(Resnet代码实现)
@默然
笔记pytorch学习人工智能python深度学习机器学习
第二十九周:文献阅读笔记(ResMLP)摘要Abstract1.ResMLP1.1文献摘要1.2文献引言1.3ResMLP方法1.3.1整体流程1.3.2残差多感知机层1.4实验1.4.1数据集1.4.2超参数设置1.4.3主要结果1.4.4监督设置1.4.5自监督设置1.4.5知识蒸馏设置1.5ResMLP的创新点2.pytorch学习(ResNet代码实现)2.1数据集2.2文件结构2.3下载
- 第二十八周:文献阅读笔记(弱监督学习)+ pytorch学习
@默然
笔记学习pytorch深度学习人工智能python
第二十八周:文献阅读笔记(弱监督学习)摘要Abstract1.弱监督学习1.1.文献摘要1.2.引言1.3.不完全监督1.3.1.主动学习与半监督学习1.3.2.通过人工干预1.3.3.无需人工干预1.4.不确切的监督1.5.不准确的监督1.6.弱监督学习的创新点2.pytorch学习2.1.对现有模型进行修改2.2.优化器的使用2.3.完整的模型训练套路总结摘要弱监督学习是一种机器学习方法,其训
- 第二十九周:文献阅读笔记(DenseNet)+ pytorch学习
@默然
笔记pytorch学习
第二十九周:文献阅读笔记(DenseNet)+pytorch学习摘要Abstract1、DenseNet文献阅读1.1文献摘要1.2文献引言1.3DenseNets网络1.3.1残差网络1.3.2密集连接1.3.3实施细节1.4实验1.4.1数据集1.4.1.1CIFAR1.4.1.2SVHN1.4.2模型训练1.4.3CIFAR和SVHN的分类结果1.4.4ImageNet上的分类结果1.5总结
- Pytorch学习记录-Pytorch可视化使用tensorboardX
我的昵称违规了
Pytorch学习记录-Pytorch可视化使用tensorboardX在很早很早以前(至少一个半月),我做过几节关于tensorboard的学习记录。https://www.jianshu.com/p/23205a7921cdhttps://www.jianshu.com/p/6235c1ecde67https://www.jianshu.com/p/2b24454b0629https://ww
- PyTorch学习---2.自动求梯度
与世无争小菜鸡
自动求梯度首先给大家介绍几个基本概念:方向导数:是一个数;反映的是f(x,y)在P0点沿方向v的变化率。偏导数:是多个数(每元有一个);是指多元函数沿坐标轴方向的方向导数,因此二元函数就有两个偏导数。偏导函数:是一个函数;是一个关于点的偏导数的函数。梯度:是一个向量;每个元素为函数对一元变量的偏导数;它既有大小(其大小为最大方向导数),也有方向。摘自《方向导数与梯度》梯度从本质上来说也是导数的一种
- pytorch学习路径
诗人藏夜里
微信公众号:诗人藏夜里参考了黄海广老师的[pytorch快速入门资料](https://zhuanlan.zhihu.com/p/87263048),并结合自身从0到1的学习经历,写下此pytorch入门路径本路径适合人群:深度学习初学者,深度学习框架初学者**欢迎拥抱最美DL框架**#1.[莫烦pytorch系列教程](https://morvanzhou.github.io/tutorials
- 小土堆pytorch学习笔记004
柠檬不萌只是酸i
深度学习pytorch学习笔记机器学习深度学习
目录1、神经网络的基本骨架-nn.Module的使用2、卷积操作实例3、神经网络-卷积层4、神经网络-最大池化的使用(1)最大池化画图理解:(2)代码实现:5、神经网络-非线性激活(1)代码实现(调用sigmoid函数)6、神经网络-线性层(1)代码7、网络搭建-小实战(1)完整代码1、神经网络的基本骨架-nn.Module的使用官网地址:pytorch里的nnimporttorchfromtor
- 小土堆pytorch学习笔记003 | 下载数据集dataset 及报错处理
柠檬不萌只是酸i
深度学习人工智能深度学习机器学习pytorchpython
目录1、下载数据集2、展示数据集里面的内容3、DataLoader的使用例子:结果展示:1、下载数据集#数据集importtorchvisiontrain_set=torchvision.datasets.CIFAR10(root="./test10_dataset",train=True,download=True)test_set=torchvision.datasets.CIFAR10(ro
- 小土堆pytorch学习笔记005 | 完结,✿✿ヽ(°▽°)ノ✿
柠檬不萌只是酸i
深度学习学习笔记pytorch机器学习深度学习
目录1、损失函数与反向传播2、如何在搭建的网络中使用损失函数呢?3、优化器4、现有网络模型的使用及修改例子:5、模型训练保存+读取(1)保存(2)读取6、完整的模型训练:(1)代码【model文件】:【主文件】:(2)运行截图:(3)绘图展示:(4)添加训练正确率的完整代码:(5)总结!!!:(6)使用GPU训练7、完整模型验证(1)代码(2)运行结果1、损失函数与反向传播①计算实际输出和目标之间
- 小土堆pytorch学习笔记002
柠檬不萌只是酸i
深度学习pytorch学习笔记
目录1、TensorBoard的使用(1)显示坐标:(2)显示图片:2、Transform的使用3、常见的Transforms(1)#ToTensor()(2)#Normalize()(3)#Resize()(4)#Compose()4、总结:1、TensorBoard的使用(1)显示坐标:fromtorch.utils.tensorboardimportSummaryWriterimportnu
- 【pytorch】pytorch学习笔记(续2)
小白冲鸭
pytorch学习笔记
p30:1.均方差(MeanSquaredError,MSE):(1)注意区分MSE和L2范数:L2范数要开根号,而MSE不需要开根号。用torch.norm函数求MSE的时候不要忘记加上pow(2)。求导:pytorch实现自动求导:第一种方法:torch.autograd.grad()设置w需要求导有两种方法:(1)在创建w之后,用来设置w需要求导。(2)在创建w的时候,用w=torch.te
- 【pytorch】pytorch学习笔记(续1)
小白冲鸭
pytorch学习笔记
p22:1.加减乘除:(1)add(a,b):等同于a+b。(2)sub(a,b):等同于a-b。(3)mul(a,b):等同于a*b。(4)div(a,b):等同于a/b。a//b表示整除。2.tensor的矩阵式相乘:matmul注意区分:(1)*:表示相同位置的元素相乘;(2).matmul:表示矩阵相乘。对于(2)矩阵的相乘,有三种方式:(1)torch.mm:只适用于二维的tensor,
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默