[LeetCode]561. Array Partition I (数组分区 1)

561. Array Partition I

Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1, b1), (a2, b2), …, (an, bn) which makes sum of min(ai, bi) for all i from 1 to n as large as possible.

题目大意:
给定一个长度为2n(偶数)的数组,分成n个小组,返回每组中较小值的和sum,使sum尽量大
Example 1:

Input: [1,4,3,2]
Output: 4
Explanation: n is 2, and the maximum sum of pairs is 4.

Note:

  • n is a positive integer, which is in the range of [1, 10000].
  • All the integers in the array will be in the range of [-10000, 10000].

思路:

  • 先排序,将相邻两个数分为一组,每组较小数都在左边,求和即可

算法分析:
查看英文版请点击上方

  • 假设对于每一对i,bi >= ai。
  • 定义Sm = min(a1,b1)+ min(a2,b2)+ … + min(an,bn)。最大的Sm是这个问题的答案。由于bi >= ai,Sm = a1 + a2 + … + an。
  • 定义Sa = a1 + b1 + a2 + b2 + … + an + bn。对于给定的输入,Sa是常数。
  • 定义di = | ai - bi |。由于bi >= ai,di = bi-ai, bi = ai+di。
  • 定义Sd = d1 + d2 + … + dn。
  • 所以Sa = a1 + (a1 + d1) + a2 + (a2 + d2) + … + an + (an + di) = 2Sm + Sd , 所以Sm =(Sa-Sd)/ 2。为得到最大Sm,给定Sa为常数,需要使Sd尽可能小。
  • 所以这个问题就是在数组中找到使di(ai和bi之间的距离)的和尽可能小的对。显然,相邻元素的这些距离之和是最小的。

代码如下:

// https://leetcode.com/problems/array-partition-i/#/description原题
//https://discuss.leetcode.com/topic/87206/java-solution-sorting-and-rough-proof-of-algorithm
#include 
#include 
#include 
using namespace std;
class Solution {
public:
    int arrayPairSum(vector<int>& nums) {
        int res = 0;
        sort(nums.begin(), nums.end());
        for(int i=0; i2){
            res += nums[i];
        }
        return res;
    }
};
int main()
{
    Solution a;
    int num[4] = {1, 4, 3, 2};
    int numLength = sizeof(num) / sizeof(num[0]);
    vector<int> nums(num, num+numLength);
    cout << a.arrayPairSum(nums) << endl;
    return 0;
}

你可能感兴趣的:(LeetCode刷题经历)