鼓捣enc28j60这个模块过程还是比较曲折的!
买这个模块的时候,卖家只附送了51的驱动工程。或者说,就51的工程能用!
在51上,一编译一下载就搞定了!
========================吐槽下==============================
在F4这个平台上呢!因为enc28j60.c这个文件的问题,导致我创建了20多份不同的工程来测试!比较坑爹!
刚开始的时候,想移植51的这个文件,发现改动量太大了,改了一下,测试不成功就放弃之!
再拿野火stm32f103的来移植,还是不成功。发现也有网友有这问题,我跟踪调试,发现mac初始化一直不成功!
只好去拿官方库里面的 lwip 的工程来改。还是不行! 这下不淡定了!
打算去收集资料!
百度关键字 stm32f4 enc28j60 ,几乎没可用的资料!有的也是用手指头都能数的完的求助贴!
谷歌关键字 stm32f4 enc28j60 ,有惊喜!能看到几个视频,而且要看还得!
那就翻吧!废了九牛二虎之力,找到了三份源码!其中日本那份下载不了,另外两份倒是下载了。
但是打开一看,又纠结了,一份是linux下的工程。另一份不知道拿什么开发工具写的。不过这两份源码倒是能用!
----------------------------------------------------------------------------------------------------
重新看了一遍enc28j60的手册,拿之前lcd的工程加上国外的源码重新写吧!
前前后后弄了两天,终于出来了!深感累到不行!
============================END=============================
说点有用的,enc28j60与f4通信比较简单。使用SPI,也就需要四根线就行了。
我的接法是:
PA4 -------------- CS
PA5 -------------- SCK
PA6 -------------- SO
PA7 -------------- SI
来张图:
ENC28J60.C
#include "ENC28J60.h"
#include "spi.h"
#include "lcd.h"
static uint8_t Enc28j60Bank;
static uint16_t gNextPacketPtr;
static uint8_t erxfcon;
unsigned char ENC28J60_SendByte(unsigned char dt)
{
while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET);
SPI_I2S_SendData(SPI1, dt);
while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET);
return SPI_I2S_ReceiveData(SPI1);
}
uint8_t enc28j60ReadOp(uint8_t op, uint8_t address)
{
uint8_t temp;
enableChip;
// issue read command
ENC28J60_SendByte(op | (address & ADDR_MASK));
temp = ENC28J60_SendByte(0xFF);
if (address & 0x80)
temp = ENC28J60_SendByte(0xFF);
// release CS
disableChip;
return temp;
}
void enc28j60WriteOp(uint8_t op, uint8_t address, uint8_t data)
{
enableChip;
ENC28J60_SendByte(op | (address & ADDR_MASK));
ENC28J60_SendByte(data);
disableChip;
}
void enc28j60PowerDown() {
enc28j60WriteOp(ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_RXEN);
while(enc28j60Read(ESTAT) & ESTAT_RXBUSY);
while(enc28j60Read(ECON1) & ECON1_TXRTS);
enc28j60WriteOp(ENC28J60_BIT_FIELD_SET, ECON2, ECON2_PWRSV);
}
void enc28j60PowerUp() {
enc28j60WriteOp(ENC28J60_BIT_FIELD_CLR, ECON2, ECON2_PWRSV);
while(!enc28j60Read(ESTAT) & ESTAT_CLKRDY);
}
void enc28j60ReadBuffer(uint16_t len, uint8_t* data)
{
enableChip;
ENC28J60_SendByte(ENC28J60_READ_BUF_MEM);
while (len--) {
*data++ = ENC28J60_SendByte(0x00);
}
disableChip;
// Remove next line suggested by user epam - not needed
// *data='\0';
}
static uint16_t enc28j60ReadBufferWord() {
uint16_t result;
enc28j60ReadBuffer(2, (uint8_t*) &result);
return result;
}
void enc28j60WriteBuffer(uint16_t len, uint8_t* data)
{
enableChip;
ENC28J60_SendByte(ENC28J60_WRITE_BUF_MEM);
while (len--)
ENC28J60_SendByte(*data++);
disableChip;
}
void enc28j60SetBank(uint8_t address)
{
if ((address & BANK_MASK) != Enc28j60Bank) {
enc28j60WriteOp(ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_BSEL1|ECON1_BSEL0);
Enc28j60Bank = address & BANK_MASK;
enc28j60WriteOp(ENC28J60_BIT_FIELD_SET, ECON1, Enc28j60Bank>>5);
}
}
uint8_t enc28j60Read(uint8_t address)
{
// set the bank
enc28j60SetBank(address);
// do the read
return enc28j60ReadOp(ENC28J60_READ_CTRL_REG, address);
}
void enc28j60WriteWord(uint8_t address, uint16_t data) {
enc28j60Write(address, data & 0xff);
enc28j60Write(address + 1, data >> 8);
}
// read upper 8 bits
uint16_t enc28j60PhyReadH(uint8_t address)
{
// Set the right address and start the register read operation
enc28j60Write(MIREGADR, address);
enc28j60Write(MICMD, MICMD_MIIRD);
delay_us(15);
// wait until the PHY read completes
while(enc28j60Read(MISTAT) & MISTAT_BUSY);
// reset reading bit
enc28j60Write(MICMD, 0x00);
return (enc28j60Read(MIRDH));
}
void enc28j60Write(uint8_t address, uint8_t data)
{
// set the bank
enc28j60SetBank(address);
// do the write
enc28j60WriteOp(ENC28J60_WRITE_CTRL_REG, address, data);
}
void enc28j60PhyWrite(uint8_t address, uint16_t data)
{
// set the PHY register address
enc28j60Write(MIREGADR, address);
// write the PHY data
enc28j60Write(MIWRL, data);
enc28j60Write(MIWRH, data>>8);
// wait until the PHY write completes
while(enc28j60Read(MISTAT) & MISTAT_BUSY){
delay_us(15);
}
}
/*
static void enc28j60PhyWriteWord(byte address, word data) {
enc28j60Write(MIREGADR, address);
//enc28j60WriteByte(MIREGADR, address);
enc28j60WriteWord(MIWRL, data);
while (enc28j60ReadByte(MISTAT) & MISTAT_BUSY)
;
}
*/
void enc28j60clkout(uint8_t clk)
{
//setup clkout: 2 is 12.5MHz:
enc28j60Write(ECOCON, clk & 0x7);
}
void enc28j60Init( uint8_t* macaddr )
{
enableChip; // ss=0
// perform system reset
enc28j60WriteOp(ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
delay_ms(50);
// check CLKRDY bit to see if reset is complete
// The CLKRDY does not work. See Rev. B4 Silicon Errata point. Just wait.
//while(!(enc28j60Read(ESTAT) & ESTAT_CLKRDY));
// do bank 0 stuff
// initialize receive buffer
// 16-bit transfers, must write low byte first
// set receive buffer start address
gNextPacketPtr = RXSTART_INIT;
// Rx start
enc28j60WriteWord(ERXSTL, RXSTART_INIT);
// set receive pointer address
enc28j60WriteWord(ERXRDPTL, RXSTART_INIT);
// RX end
enc28j60WriteWord(ERXNDL, RXSTOP_INIT);
// TX start
enc28j60WriteWord(ETXSTL, TXSTART_INIT);
// TX end
enc28j60WriteWord(ETXNDL, TXSTOP_INIT);
// do bank 1 stuff, packet filter:
// For broadcast packets we allow only ARP packtets
// All other packets should be unicast only for our mac (MAADR)
//
// The pattern to match on is therefore
// Type ETH.DST
// ARP BROADCAST
// 06 08 -- ff ff ff ff ff ff -> ip checksum for theses bytes=f7f9
// in binary these poitions are:11 0000 0011 1111
// This is hex 303F->EPMM0=0x3f,EPMM1=0x30
//enc28j60Write(ERXFCON, ERXFCON_UCEN|ERXFCON_CRCEN|ERXFCON_PMEN);
//Change to add ERXFCON_BCEN recommended by epam
//enc28j60Write(ERXFCON, ERXFCON_UCEN|ERXFCON_CRCEN|ERXFCON_PMEN|ERXFCON_BCEN);
erxfcon = ERXFCON_UCEN|ERXFCON_CRCEN|ERXFCON_PMEN|ERXFCON_BCEN;
enc28j60Write(ERXFCON, erxfcon );
enc28j60WriteWord(EPMM0, 0x303f);
enc28j60WriteWord(EPMCSL, 0xf7f9);
//
// do bank 2 stuff
// enable MAC receive
enc28j60Write(MACON1, MACON1_MARXEN|MACON1_TXPAUS|MACON1_RXPAUS);
// bring MAC out of reset
enc28j60Write(MACON2, 0x00);
// enable automatic padding to 60bytes and CRC operations
enc28j60WriteOp(ENC28J60_BIT_FIELD_SET, MACON3, MACON3_PADCFG0|MACON3_TXCRCEN|MACON3_FRMLNEN); //|MACON3_FULDPX);
// set inter-frame gap (non-back-to-back)
enc28j60WriteWord(MAIPGL, 0x0C12);
// set inter-frame gap (back-to-back)
enc28j60Write(MABBIPG, 0x12);
// Set the maximum packet size which the controller will accept
// Do not send packets longer than MAX_FRAMELEN:
enc28j60WriteWord(MAMXFLL, MAX_FRAMELEN);
// do bank 3 stuff
// write MAC address
// NOTE: MAC address in ENC28J60 is byte-backward
enc28j60Write(MAADR5, macaddr[0]);
enc28j60Write(MAADR4, macaddr[1]);
enc28j60Write(MAADR3, macaddr[2]);
enc28j60Write(MAADR2, macaddr[3]);
enc28j60Write(MAADR1, macaddr[4]);
enc28j60Write(MAADR0, macaddr[5]);
// no loopback of transmitted frames
enc28j60PhyWrite(PHCON2, PHCON2_HDLDIS);
// switch to bank 0
enc28j60SetBank(ECON1);
// enable interrutps
enc28j60WriteOp(ENC28J60_BIT_FIELD_SET, EIE, EIE_INTIE|EIE_PKTIE);
// enable packet reception
enc28j60WriteOp(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN);
LCD_String(20,80,"Mac Init",GREEN);
}
// read the revision of the chip:
uint8_t enc28j60getrev(void)
{
uint8_t rev;
rev=enc28j60Read(EREVID);
// microchip forgot to step the number on the silcon when they
// released the revision B7. 6 is now rev B7. We still have
// to see what they do when they release B8. At the moment
// there is no B8 out yet
if (rev>5) rev++;
return(rev);
}
// A number of utility functions to enable/disable broadcast and multicast bits
void enc28j60EnableBroadcast( void ) {
erxfcon |= ERXFCON_BCEN;
enc28j60Write(ERXFCON, erxfcon);
}
void enc28j60DisableBroadcast( void ) {
erxfcon &= (0xff ^ ERXFCON_BCEN);
enc28j60Write(ERXFCON, erxfcon);
}
void enc28j60EnableMulticast( void ) {
erxfcon |= ERXFCON_MCEN;
enc28j60Write(ERXFCON, erxfcon);
}
void enc28j60DisableMulticast( void ) {
erxfcon &= (0xff ^ ERXFCON_MCEN);
enc28j60Write(ERXFCON, erxfcon);
}
// link status
uint8_t enc28j60linkup(void)
{
// bit 10 (= bit 3 in upper reg)
return(enc28j60PhyReadH(PHSTAT2) && 4);
}
void enc28j60PacketSend(uint16_t len, uint8_t* packet)
{
// Check no transmit in progress
while (enc28j60ReadOp(ENC28J60_READ_CTRL_REG, ECON1) & ECON1_TXRTS)
{
// Reset the transmit logic problem. See Rev. B4 Silicon Errata point 12.
if( (enc28j60Read(EIR) & EIR_TXERIF) ) {
enc28j60WriteOp(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRST);
enc28j60WriteOp(ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_TXRST);
}
}
// Set the write pointer to start of transmit buffer area
enc28j60WriteWord(EWRPTL, TXSTART_INIT);
// Set the TXND pointer to correspond to the packet size given
enc28j60WriteWord(ETXNDL, (TXSTART_INIT+len));
// write per-packet control byte (0x00 means use macon3 settings)
enc28j60WriteOp(ENC28J60_WRITE_BUF_MEM, 0, 0x00);
// copy the packet into the transmit buffer
enc28j60WriteBuffer(len, packet);
// send the contents of the transmit buffer onto the network
enc28j60WriteOp(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRTS);
// Reset the transmit logic problem. See Rev. B4 Silicon Errata point 12.
}
// just probe if there might be a packet
//uint8_t enc28j60hasRxPkt(void)
//{
// return enc28j60ReadByte(EPKTCNT) > 0;
//}
// Gets a packet from the network receive buffer, if one is available.
// The packet will by headed by an ethernet header.
// maxlen The maximum acceptable length of a retrieved packet.
// packet Pointer where packet data should be stored.
// Returns: Packet length in bytes if a packet was retrieved, zero otherwise.
uint16_t enc28j60PacketReceive(uint16_t maxlen, uint8_t* packet)
{
uint16_t rxstat;
uint16_t len;
// check if a packet has been received and buffered
//if( !(enc28j60Read(EIR) & EIR_PKTIF) ){
// The above does not work. See Rev. B4 Silicon Errata point 6.
if( enc28j60Read(EPKTCNT) ==0 ){
return(0);
}
// Set the read pointer to the start of the received packet
enc28j60WriteWord(ERDPTL, gNextPacketPtr);
//enc28j60Write(ERDPTL, (gNextPacketPtr &0xFF));
//enc28j60Write(ERDPTH, (gNextPacketPtr)>>8);
// read the next packet pointer
gNextPacketPtr = enc28j60ReadBufferWord();
//gNextPacketPtr = enc28j60ReadOp(ENC28J60_READ_BUF_MEM, 0);
//gNextPacketPtr |= enc28j60ReadOp(ENC28J60_READ_BUF_MEM, 0)<<8;
// read the packet length (see datasheet page 43)
len = enc28j60ReadBufferWord() - 4;
//len = enc28j60ReadOp(ENC28J60_READ_BUF_MEM, 0);
//len |= enc28j60ReadOp(ENC28J60_READ_BUF_MEM, 0)<<8;
//len-=4; //remove the CRC count
// read the receive status (see datasheet page 43)
rxstat = enc28j60ReadBufferWord();
//rxstat = enc28j60ReadOp(ENC28J60_READ_BUF_MEM, 0);
//rxstat |= ((uint16_t)enc28j60ReadOp(ENC28J60_READ_BUF_MEM, 0))<<8;
// limit retrieve length
if (len>maxlen-1){
len=maxlen-1;
}
// check CRC and symbol errors (see datasheet page 44, table 7-3):
// The ERXFCON.CRCEN is set by default. Normally we should not
// need to check this.
if ((rxstat & 0x80)==0){
// invalid
len=0;
}else{
// copy the packet from the receive buffer
enc28j60ReadBuffer(len, packet);
}
// Move the RX read pointer to the start of the next received packet
// This frees the memory we just read out
enc28j60WriteWord(ERXRDPTL, gNextPacketPtr );
//enc28j60Write(ERXRDPTL, (gNextPacketPtr &0xFF));
//enc28j60Write(ERXRDPTH, (gNextPacketPtr)>>8);
// However, compensate for the errata point 13, rev B4: enver write an even address!
if ((gNextPacketPtr - 1 < RXSTART_INIT)
|| (gNextPacketPtr -1 > RXSTOP_INIT)) {
enc28j60WriteWord(ERXRDPTL, RXSTOP_INIT);
//enc28j60Write(ERXRDPTL, (RXSTOP_INIT)&0xFF);
//enc28j60Write(ERXRDPTH, (RXSTOP_INIT)>>8);
} else {
enc28j60WriteWord(ERXRDPTL, (gNextPacketPtr-1));
//enc28j60Write(ERXRDPTL, (gNextPacketPtr-1)&0xFF);
//enc28j60Write(ERXRDPTH, (gNextPacketPtr-1)>>8);
}
// decrement the packet counter indicate we are done with this packet
enc28j60WriteOp(ENC28J60_BIT_FIELD_SET, ECON2, ECON2_PKTDEC);
return(len);
}
ENC28J60.H
#ifndef __ENC28J60_H
#define __ENC28J60_H
#include "stm32f4xx.h"
#include "Delay.h"
#define disableChip GPIO_SetBits(GPIOA,GPIO_Pin_4); delay_us(2);
#define enableChip GPIO_ResetBits(GPIOA,GPIO_Pin_4); delay_us(2);
// ENC28J60 Control Registers
// Control register definitions are a combination of address,
// bank number, and Ethernet/MAC/PHY indicator bits.
// - Register address (bits 0-4)
// - Bank number (bits 5-6)
// - MAC/PHY indicator (bit 7)
#define ADDR_MASK 0x1F
#define BANK_MASK 0x60
#define SPRD_MASK 0x80
// All-bank registers
#define EIE 0x1B
#define EIR 0x1C
#define ESTAT 0x1D
#define ECON2 0x1E
#define ECON1 0x1F
// Bank 0 registers
#define ERDPTL (0x00|0x00)
#define ERDPTH (0x01|0x00)
#define EWRPTL (0x02|0x00)
#define EWRPTH (0x03|0x00)
#define ETXSTL (0x04|0x00)
#define ETXSTH (0x05|0x00)
#define ETXNDL (0x06|0x00)
#define ETXNDH (0x07|0x00)
#define ERXSTL (0x08|0x00)
#define ERXSTH (0x09|0x00)
#define ERXNDL (0x0A|0x00)
#define ERXNDH (0x0B|0x00)
#define ERXRDPTL (0x0C|0x00)
#define ERXRDPTH (0x0D|0x00)
#define ERXWRPTL (0x0E|0x00)
#define ERXWRPTH (0x0F|0x00)
#define EDMASTL (0x10|0x00)
#define EDMASTH (0x11|0x00)
#define EDMANDL (0x12|0x00)
#define EDMANDH (0x13|0x00)
#define EDMADSTL (0x14|0x00)
#define EDMADSTH (0x15|0x00)
#define EDMACSL (0x16|0x00)
#define EDMACSH (0x17|0x00)
// Bank 1 registers
#define EHT0 (0x00|0x20)
#define EHT1 (0x01|0x20)
#define EHT2 (0x02|0x20)
#define EHT3 (0x03|0x20)
#define EHT4 (0x04|0x20)
#define EHT5 (0x05|0x20)
#define EHT6 (0x06|0x20)
#define EHT7 (0x07|0x20)
#define EPMM0 (0x08|0x20)
#define EPMM1 (0x09|0x20)
#define EPMM2 (0x0A|0x20)
#define EPMM3 (0x0B|0x20)
#define EPMM4 (0x0C|0x20)
#define EPMM5 (0x0D|0x20)
#define EPMM6 (0x0E|0x20)
#define EPMM7 (0x0F|0x20)
#define EPMCSL (0x10|0x20)
#define EPMCSH (0x11|0x20)
#define EPMOL (0x14|0x20)
#define EPMOH (0x15|0x20)
#define EWOLIE (0x16|0x20)
#define EWOLIR (0x17|0x20)
#define ERXFCON (0x18|0x20)
#define EPKTCNT (0x19|0x20)
// Bank 2 registers
#define MACON1 (0x00|0x40|0x80)
#define MACON2 (0x01|0x40|0x80)
#define MACON3 (0x02|0x40|0x80)
#define MACON4 (0x03|0x40|0x80)
#define MABBIPG (0x04|0x40|0x80)
#define MAIPGL (0x06|0x40|0x80)
#define MAIPGH (0x07|0x40|0x80)
#define MACLCON1 (0x08|0x40|0x80)
#define MACLCON2 (0x09|0x40|0x80)
#define MAMXFLL (0x0A|0x40|0x80)
#define MAMXFLH (0x0B|0x40|0x80)
#define MAPHSUP (0x0D|0x40|0x80)
#define MICON (0x11|0x40|0x80)
#define MICMD (0x12|0x40|0x80)
#define MIREGADR (0x14|0x40|0x80)
#define MIWRL (0x16|0x40|0x80)
#define MIWRH (0x17|0x40|0x80)
#define MIRDL (0x18|0x40|0x80)
#define MIRDH (0x19|0x40|0x80)
// Bank 3 registers
#define MAADR1 (0x00|0x60|0x80)
#define MAADR0 (0x01|0x60|0x80)
#define MAADR3 (0x02|0x60|0x80)
#define MAADR2 (0x03|0x60|0x80)
#define MAADR5 (0x04|0x60|0x80)
#define MAADR4 (0x05|0x60|0x80)
#define EBSTSD (0x06|0x60)
#define EBSTCON (0x07|0x60)
#define EBSTCSL (0x08|0x60)
#define EBSTCSH (0x09|0x60)
#define MISTAT (0x0A|0x60|0x80)
#define EREVID (0x12|0x60)
#define ECOCON (0x15|0x60)
#define EFLOCON (0x17|0x60)
#define EPAUSL (0x18|0x60)
#define EPAUSH (0x19|0x60)
// PHY registers
#define PHCON1 0x00
#define PHSTAT1 0x01
#define PHHID1 0x02
#define PHHID2 0x03
#define PHCON2 0x10
#define PHSTAT2 0x11
#define PHIE 0x12
#define PHIR 0x13
#define PHLCON 0x14
// ENC28J60 ERXFCON Register Bit Definitions
#define ERXFCON_UCEN 0x80
#define ERXFCON_ANDOR 0x40
#define ERXFCON_CRCEN 0x20
#define ERXFCON_PMEN 0x10
#define ERXFCON_MPEN 0x08
#define ERXFCON_HTEN 0x04
#define ERXFCON_MCEN 0x02
#define ERXFCON_BCEN 0x01
// ENC28J60 EIE Register Bit Definitions
#define EIE_INTIE 0x80
#define EIE_PKTIE 0x40
#define EIE_DMAIE 0x20
#define EIE_LINKIE 0x10
#define EIE_TXIE 0x08
#define EIE_WOLIE 0x04
#define EIE_TXERIE 0x02
#define EIE_RXERIE 0x01
// ENC28J60 EIR Register Bit Definitions
#define EIR_PKTIF 0x40
#define EIR_DMAIF 0x20
#define EIR_LINKIF 0x10
#define EIR_TXIF 0x08
#define EIR_WOLIF 0x04
#define EIR_TXERIF 0x02
#define EIR_RXERIF 0x01
// ENC28J60 ESTAT Register Bit Definitions
#define ESTAT_INT 0x80
#define ESTAT_LATECOL 0x10
#define ESTAT_RXBUSY 0x04
#define ESTAT_TXABRT 0x02
#define ESTAT_CLKRDY 0x01
// ENC28J60 ECON2 Register Bit Definitions
#define ECON2_AUTOINC 0x80
#define ECON2_PKTDEC 0x40
#define ECON2_PWRSV 0x20
#define ECON2_VRPS 0x08
// ENC28J60 ECON1 Register Bit Definitions
#define ECON1_TXRST 0x80
#define ECON1_RXRST 0x40
#define ECON1_DMAST 0x20
#define ECON1_CSUMEN 0x10
#define ECON1_TXRTS 0x08
#define ECON1_RXEN 0x04
#define ECON1_BSEL1 0x02
#define ECON1_BSEL0 0x01
// ENC28J60 MACON1 Register Bit Definitions
#define MACON1_LOOPBK 0x10
#define MACON1_TXPAUS 0x08
#define MACON1_RXPAUS 0x04
#define MACON1_PASSALL 0x02
#define MACON1_MARXEN 0x01
// ENC28J60 MACON2 Register Bit Definitions
#define MACON2_MARST 0x80
#define MACON2_RNDRST 0x40
#define MACON2_MARXRST 0x08
#define MACON2_RFUNRST 0x04
#define MACON2_MATXRST 0x02
#define MACON2_TFUNRST 0x01
// ENC28J60 MACON3 Register Bit Definitions
#define MACON3_PADCFG2 0x80
#define MACON3_PADCFG1 0x40
#define MACON3_PADCFG0 0x20
#define MACON3_TXCRCEN 0x10
#define MACON3_PHDRLEN 0x08
#define MACON3_HFRMLEN 0x04
#define MACON3_FRMLNEN 0x02
#define MACON3_FULDPX 0x01
// ENC28J60 MICMD Register Bit Definitions
#define MICMD_MIISCAN 0x02
#define MICMD_MIIRD 0x01
// ENC28J60 MISTAT Register Bit Definitions
#define MISTAT_NVALID 0x04
#define MISTAT_SCAN 0x02
#define MISTAT_BUSY 0x01
// ENC28J60 PHY PHCON1 Register Bit Definitions
#define PHCON1_PRST 0x8000
#define PHCON1_PLOOPBK 0x4000
#define PHCON1_PPWRSV 0x0800
#define PHCON1_PDPXMD 0x0100
// ENC28J60 PHY PHSTAT1 Register Bit Definitions
#define PHSTAT1_PFDPX 0x1000
#define PHSTAT1_PHDPX 0x0800
#define PHSTAT1_LLSTAT 0x0004
#define PHSTAT1_JBSTAT 0x0002
// ENC28J60 PHY PHCON2 Register Bit Definitions
#define PHCON2_FRCLINK 0x4000
#define PHCON2_TXDIS 0x2000
#define PHCON2_JABBER 0x0400
#define PHCON2_HDLDIS 0x0100
// ENC28J60 Packet Control Byte Bit Definitions
#define PKTCTRL_PHUGEEN 0x08
#define PKTCTRL_PPADEN 0x04
#define PKTCTRL_PCRCEN 0x02
#define PKTCTRL_POVERRIDE 0x01
// SPI operation codes
#define ENC28J60_READ_CTRL_REG 0x00
#define ENC28J60_READ_BUF_MEM 0x3A
#define ENC28J60_WRITE_CTRL_REG 0x40
#define ENC28J60_WRITE_BUF_MEM 0x7A
#define ENC28J60_BIT_FIELD_SET 0x80
#define ENC28J60_BIT_FIELD_CLR 0xA0
#define ENC28J60_SOFT_RESET 0xFF
// The RXSTART_INIT should be zero. See Rev. B4 Silicon Errata
// buffer boundaries applied to internal 8K ram
// the entire available packet buffer space is allocated
//
// start with recbuf at 0/
#define RXSTART_INIT 0x0
// receive buffer end
#define RXSTOP_INIT (0x1FFF-0x0600-1)
// start TX buffer at 0x1FFF-0x0600, pace for one full ethernet frame (~1500 bytes)
#define TXSTART_INIT (0x1FFF-0x0600)
// stp TX buffer at end of mem
#define TXSTOP_INIT 0x1FFF
//
// max frame length which the conroller will accept:
#define MAX_FRAMELEN 1500 // (note: maximum ethernet frame length would be 1518)
//#define MAX_FRAMELEN 600
uint8_t enc28j60ReadOp(uint8_t op, uint8_t address);
// functions
extern uint8_t enc28j60ReadOp(uint8_t op, uint8_t address);
extern void enc28j60WriteOp(uint8_t op, uint8_t address, uint8_t data);
extern void enc28j60ReadBuffer(uint16_t len, uint8_t* data);
extern void enc28j60WriteBuffer(uint16_t len, uint8_t* data);
extern void enc28j60SetBank(uint8_t address);
extern uint8_t enc28j60Read(uint8_t address);
extern void enc28j60Write(uint8_t address, uint8_t data);
extern void enc28j60PhyWrite(uint8_t address, uint16_t data);
extern void enc28j60clkout(uint8_t clk);
extern void enc28j60SpiInit(void);//////
extern void enc28j60Init(uint8_t* macaddr);
extern void enc28j60PacketSend(uint16_t len, uint8_t* packet);
extern uint16_t enc28j60PacketReceive(uint16_t maxlen, uint8_t* packet);
extern uint8_t enc28j60getrev(void);
extern uint8_t enc28j60hasRxPkt(void);
extern uint8_t enc28j60linkup(void);
extern void enc28j60EnableBroadcast( void );
extern void enc28j60DisableBroadcast( void );
extern void enc28j60EnableMulticast( void );
extern void enc28j60DisableMulticast( void );
extern void enc28j60PowerDown(void);
extern void enc28j60PowerUp(void);
#endif /* __ENC28J60_H */
拍了个小视频:
http://pan.baidu.com/s/1rDkHq
密码:95cm
再结合点传感器,或许会发现有点智能家居的影子!