Pytorch中BCELoss,BCEWithLogitsLoss和CrossEntropyLoss的区别

BCEWithLogitsLoss = Sigmoid+BCELoss,当网络最后一层使用nn.Sigmoid时,就用BCELoss,当网络最后一层不使用nn.Sigmoid时,就用BCEWithLogitsLoss。
(BCELoss)BCEWithLogitsLoss用于单标签二分类或者多标签二分类,输出和目标的维度是(batch,C),batch是样本数量,C是类别数量,对于每一个batch的C个值,对每个值求sigmoid到0-1之间,所以每个batch的C个值之间是没有关系的,相互独立的,所以之和不一定为1。每个C值代表属于一类标签的概率。如果是单标签二分类,那输出和目标的维度是(batch,1)即可。
CrossEntropyLoss用于多类别分类,输出和目标的维度是(batch,C),batch是样本数量,C是类别数量,每一个C之间是互斥的,相互关联的,对于每一个batch的C个值,一起求每个C的softmax,所以每个batch的所有C个值之和是1,哪个值大,代表其属于哪一类。如果用于二分类,那输出和目标的维度是(batch,2)。
  • 参考
    1.一文搞懂交叉熵在机器学习中的使用,透彻理解交叉熵背后的直觉
    2.CrossEntropyLoss
    3.BCEWithLogitsLoss
    4.二分类问题,应该选择sigmoid还是softmax?

你可能感兴趣的:(Pytorch)