poj1328 Radar Installation 解题报告

 Description

Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d. 

We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.
poj1328 Radar Installation 解题报告_第1张图片 
Figure A Sample Input of Radar Installations

 

Input

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases. 

The input is terminated by a line containing pair of zeros 

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

Sample Input

3 2
1 2
-3 1
2 1

1 2
0 2

0 0

Sample Output

Case 1: 2
Case 2: 1


解题思路:看到题目想到了先把输入的点排序,然后求出每个人的可能圆心的范围,从左到右一直找下去, 只要是重合的,就可以归入一个圆心,但要规划圆心的时候,要注意,当圆心归入后,要对他们的 右范围比较,选少的作为新的右范围。这里面还是数据处理比较重要。  代码如下: 
Code:
  1. #include  
  2. #include  
  3. #include   
  4. using namespace std;  
  5. const int Max(1005);  
  6. typedef struct data  
  7. {  
  8.     double x1;  
  9.     double x2;  
  10. }coordinate;                  //定义圆心范围的结构体  
  11.   
  12. coordinate point[Max];  
  13.   
  14. int compare(coordinate a, coordinate b)  
  15. {  
  16.     return (a.x1-b.x1) < 10e-7;  
  17. }  
  18.   
  19. int main()  
  20. {  
  21.     int step=1;  
  22.     while(1)  
  23.     {  
  24.         int flag=0;  
  25.         int n,d;  
  26.         cin>>n>>d;  
  27.         if(n==0&&d==0)  
  28.             break;  
  29.         int a,b;  
  30.         for(int i=0;i// 注意这边i不能从1开始,因为后面用到了sort排序  
  31.         {  
  32.             cin>>a>>b;  
  33.             if(!flag&&(b<= d))   
  34.             {  
  35.                 double temp = sqrt(double(d*d-b*b));                //由点处理出圆心的范围  
  36.                 point[i].x1 = a-temp;  
  37.                 point[i].x2 = a+temp;  
  38.             }  
  39.             else  
  40.                 flag=1;  
  41.   
  42.         }  
  43.         if(flag==1)  
  44.         {  
  45.             cout<<"Case "<": "<<"-1"<
  46.             step++;  
  47.         }  
  48.         else  
  49.         {  
  50.             int sum=1;  
  51.             sort(point, point+n, compare);  
  52.             double temp=point[0].x2;  
  53.             for(int i=1;i
  54.             {  
  55.                 if(point[i].x1-temp>10e-7)  
  56.                 {  
  57.                     sum++;  
  58.                     temp=point[i].x2;  
  59.                 }  
  60.                 else  
  61.                 {  
  62.                     if(point[i].x2-temp< 10e-7)          //当走到的点的右范围比原来的右范围小,即temp相应的改   
  63.                     temp = point[i].x2;  
  64.                 }  
  65.             }  
  66.             cout<<"Case "<": "<
  67.             step++;  
  68.         }  
  69.     }  
  70.     return 0;  
  71.       
  72. }  


你可能感兴趣的:(POJ)