提高yolo检测精度的一些方法

随手记,看到别人写的,觉得蛮有道理的,有时间去实现看看,是否有用

  • random=1可以设置适应多分辨率

  • 提升分辨率:416--> 608等必须是32倍数

  • 重新计算你的数据集的anchor:(注意设置的时候计算问题)

    darknet.exe detector calc_anchors data/obj.data -num_of_clusters 9 -width 416 -height 416

  • 检查数据集通过https://github.com/AlexeyAB/Yolo_mark

  • 数据集最好每个类有2000张图片,至少需要迭代2000*类的个数

  • 数据集最好有没有标注的对象,即负样本,对应空的txt文件,最好有多少样本就设计多少负样本。

  • 对于一张图有很多个样本的情况,使用max=200属性(yolo层或者region层)

  • for training for small objects - set layers = -1, 11 instead of https://github.com/AlexeyAB/darknet/blob/6390a5a2ab61a0bdf6f1a9a6b4a739c16b36e0d7/cfg/yolov3.cfg#L720 and set stride=4 instead of https://github.com/AlexeyAB/darknet/blob/6390a5a2ab61a0bdf6f1a9a6b4a739c16b36e0d7/cfg/yolov3.cfg#L717

  • 训练数据需要满足以下条件:

    • train_network_width * train_obj_width / train_image_width ~= detection_network_width * detection_obj_width / detection_image_width
    • train_network_height * train_obj_height / train_image_height ~= detection_network_height * detection_obj_height / detection_image_height
  • 为了加速训练,可以做fine-tuning而不是从头开始训练,设置stopbackward=1在网络的结束部分(以####作为分割)

  • 在训练完以后,进行目标检测的时候,可以提高网络的分辨率,以便刚好检测小目标。

    • 不需要重新训练,需要使用原先低分辨率的权重,测用更高分辨率。
    • 为了得到更高的检测效果,可以提升分辨率至608*608甚至832*832

你可能感兴趣的:(提高yolo检测精度的一些方法)