1、限定使用GPU的序号
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '3'
os.system('echo $CUDA_VISIBLE_DEVICES')
2、导入相关头文件
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import torch.optim as optim
from torch.autograd import Variable
import numpy as np
from Encoding import load_feature
3、自定义网络
class TransientModel(nn.Module):
def __init__(self):
super(TransientModel,self).__init__()
self.conv1 = nn.Conv2d(16, 8, kernel_size=1)
self.conv2 = nn.Conv2d(8, 4, kernel_size=1)
self.conv3 = nn.Conv2d(4, 2, kernel_size=1)
self.conv4 = nn.Conv2d(2, 1, kernel_size=1)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
return x
4、自定义损失函数Loss
class MyLoss(nn.Module):
def __init__(self):
super(MyLoss, self).__init__()
print '1'
def forward(self, pred, truth):
truth = torch.mean(truth,1)
truth = truth.view(-1,2048)
pred = pred.view(-1,2048)
return torch.mean(torch.mean((pred-truth)**2,1),0)
5、自定义数据读取
class MyTrainData(data.Dataset):
def __init__(self):
self.video_path = '/data/FrameFeature/Penn/'
self.video_file = '/data/FrameFeature/Penn_train.txt'
fp = open(self.video_file,'r')
lines = fp.readlines()
fp.close()
self.video_name = []
for line in lines:
self.video_name.append(line.strip().split(' ')[0])
def __len__(self):
return len(self.video_name)
def __getitem__(self, index):
data = load_feature(os.path.join(self.video_path,self.video_name[index]))
data = np.expand_dims(data,2)
return data
6、定义Train函数
def train(model, train_loader, myloss, optimizer, epoch):
model.train()
for batch_idx, train_data in enumerate(train_loader):
train_data = Variable(train_data).cuda()
optimizer.zero_grad()
output = model(train_data)
loss = myloss(output, train_data)
loss.backward()
optimizer.step()
if batch_idx%100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tloss: {:.6f}'.format(
epoch, batch_idx*len(train_data), len(train_loader.dataset),
100.*batch_idx/len(train_loader), loss.data.cpu().numpy()[0]))
7、开始训练
if __name__=='__main__':
# main()
model = TransientModel().cuda()
myloss= MyLoss()
train_data = MyTrainData()
train_loader = data.DataLoader(train_data,batch_size=1,shuffle=True,num_workers=1)
optimizer = optim.SGD(model.parameters(),lr=0.001)
for epoch in range(10):
train(model, train_loader, myloss, optimizer, epoch)
8、结果展示
9、完整代码
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '3'
os.system('echo $CUDA_VISIBLE_DEVICES')
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import torch.optim as optim
from torch.autograd import Variable
import numpy as np
from Encoding import load_feature
class TransientModel(nn.Module):
def __init__(self):
super(TransientModel,self).__init__()
self.conv1 = nn.Conv2d(16, 8, kernel_size=1)
self.conv2 = nn.Conv2d(8, 4, kernel_size=1)
self.conv3 = nn.Conv2d(4, 2, kernel_size=1)
self.conv4 = nn.Conv2d(2, 1, kernel_size=1)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
return x
class MyLoss(nn.Module):
def __init__(self):
super(MyLoss, self).__init__()
print '1'
def forward(self, pred, truth):
truth = torch.mean(truth,1)
truth = truth.view(-1,2048)
pred = pred.view(-1,2048)
return torch.mean(torch.mean((pred-truth)**2,1),0)
class MyTrainData(data.Dataset):
def __init__(self):
self.video_path = '/data/FrameFeature/Penn/'
self.video_file = '/data/FrameFeature/Penn_train.txt'
fp = open(self.video_file,'r')
lines = fp.readlines()
fp.close()
self.video_name = []
for line in lines:
self.video_name.append(line.strip().split(' ')[0])
def __len__(self):
return len(self.video_name)
def __getitem__(self, index):
data = load_feature(os.path.join(self.video_path,self.video_name[index]))
data = np.expand_dims(data,2)
return data
def train(model, train_loader, myloss, optimizer, epoch):
model.train()
for batch_idx, train_data in enumerate(train_loader):
train_data = Variable(train_data).cuda()
optimizer.zero_grad()
output = model(train_data)
loss = myloss(output, train_data)
loss.backward()
optimizer.step()
if batch_idx%100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tloss: {:.6f}'.format(
epoch, batch_idx*len(train_data), len(train_loader.dataset),
100.*batch_idx/len(train_loader), loss.data.cpu().numpy()[0]))
def main():
model = TransientModel().cuda()
myloss= MyLoss()
train_data = MyTrainData()
train_loader = data.DataLoader(train_data,batch_size=1,shuffle=True,num_workers=1)
optimizer = optim.SGD(model.parameters(),lr=0.001)
for epoch in range(10):
train(model, train_loader, myloss, optimizer, epoch)
if __name__=='__main__':
main()