神经网络架构搜索(NAS)论文和代码汇总

1.Blockwisely Supervised Neural Architecture Search with Knowledge Distillation(该论文在ImageNet数据集进行训练得到了78.4% top-1 accuracy ,比EfficientNet-B0高了2.1%个点)

作者团队:暗物智能、Monash 大学、中山大学

论文链接:https://arxiv.org/abs/1911.13053

  1. Semi-Supervised Neural Architecture Search

作者团队:MSRA、中科大

论文链接:https://arxiv.org/abs/2002.10389

代码地址:https://github.com/renqianluo/SemiNAS

  1. CARS: Continuous Evolution for Efficient Neural Architecture Search

作者团队:北大、华为诺亚、鹏城实验室、悉尼大学

论文链接:https://arxiv.org/abs/1909.04977

代码(即将开源):https://github.com/huawei-noah/CARS

  1. Densely Connected Search Space for More Flexible Neural Architecture Search

论文链接:https://arxiv.org/abs/1906.09607

代码地址:https://github.com/JaminFong/DenseNAS

  1. AdversarialNAS: Adversarial Neural Architecture Search for GANs

论文链接:https://arxiv.org/pdf/1912.02037.pdf

代码地址:https://github.com/chengaopro/AdversarialNAS

  1. Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection

作者团队:北大、华为诺亚、悉尼大学

论文链接:https://arxiv.org/pdf/2003.11818.pdf

代码地址:https://github.com/ggjy/HitDet.pytorch

  1. AOWS: Adaptive and optimal network width search with latency constraints

论文链接:https://arxiv.org/abs/2005.10481

代码地址:https://github.com/bermanmaxim/AOWS

  1. MTL-NAS: Task-Agnostic Neural Architecture Search towards General-Purpose Multi-Task Learning

论文:https://arxiv.org/abs/2003.14058

代码:https://github.com/bhpfelix/MTLNAS

  1. Neural Architecture Search for Lightweight Non-Local Networks

论文:https://arxiv.org/abs/2004.01961

代码:https://github.com/LiYingwei/AutoNL

  1. SGAS: Sequential Greedy Architecture Search

作者团队:KAUST, Intel

论文链接:https://arxiv.org/pdf/1912.00195.pdf

代码地址:https://www.deepgcns.org/auto/sgas

  1. GreedyNAS: Towards Fast One-Shot NAS with Greedy Supernet

作者团队:商汤、清华、Dian、华科

论文链接:https://arxiv.org/abs/2003.11236

  1. FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions(UC Berkley, Facebook)

论文链接:https://arxiv.org/abs/2004.05565

代码地址:https://github.com/facebookresearch/mobile-vision

  1. MiLeNAS: Efficient Neural Architecture Search via Mixed-Level Reformulation

作者团队:南加州、腾讯、港中文、港科大

论文链接:https://arxiv.org/abs/2003.12238

代码地址:https://github.com/chaoyanghe/MiLeNAS

  1. Designing Network Design Spaces

作者团队:Facebook FAIR(何凯明团队)

论文链接:https://arxiv.org/abs/2003.13678

  1. Search to Distill: Pearls are Everywhere but not the Eyes

作者团队:Google,港中文

论文链接:https://arxiv.org/abs/1911.09074

  1. EcoNAS: Finding Proxies for Economical Neural Architecture Search

作者团队:悉尼大学,南洋理工,商汤

论文链接:https://arxiv.org/abs/2001.01233

17.DSNAS: Direct Neural Architecture Search without Parameter Retraining

作者团队:港中文、UCLA、剑桥、商汤

论文链接:https://arxiv.org/abs/2002.09128

18.MobileDets: Searching for Object Detection Architectures for Mobile Accelerators

论文作者:谷歌、威斯康星大学麦迪逊分校

论文链接:https://arxiv.org/abs/2004.14525

  1. Rethinking Performance Estimation in Neural Architecture Search

论文:https://arxiv.org/abs/2005.09917

代码:https://github.com/zhengxiawu/rethinking_performance_estimation_in_NAS

解读1:https://www.zhihu.com/question/372070853/answer/1035234510

解读2:https://zhuanlan.zhihu.com/p/111167409

  1. When NAS Meets Robustness: InSearchof RobustArchitecturesagainst Adversarial Attacks

作者团队:港中文、 MIT

论文链接:https://arxiv.org/abs/1911.10695

代码地址:https://github.com/gmh14/RobNets

你可能感兴趣的:(NAS)