1.Blockwisely Supervised Neural Architecture Search with Knowledge Distillation(该论文在ImageNet数据集进行训练得到了78.4% top-1 accuracy ,比EfficientNet-B0高了2.1%个点)
作者团队:暗物智能、Monash 大学、中山大学
论文链接:https://arxiv.org/abs/1911.13053
作者团队:MSRA、中科大
论文链接:https://arxiv.org/abs/2002.10389
代码地址:https://github.com/renqianluo/SemiNAS
作者团队:北大、华为诺亚、鹏城实验室、悉尼大学
论文链接:https://arxiv.org/abs/1909.04977
代码(即将开源):https://github.com/huawei-noah/CARS
论文链接:https://arxiv.org/abs/1906.09607
代码地址:https://github.com/JaminFong/DenseNAS
论文链接:https://arxiv.org/pdf/1912.02037.pdf
代码地址:https://github.com/chengaopro/AdversarialNAS
作者团队:北大、华为诺亚、悉尼大学
论文链接:https://arxiv.org/pdf/2003.11818.pdf
代码地址:https://github.com/ggjy/HitDet.pytorch
论文链接:https://arxiv.org/abs/2005.10481
代码地址:https://github.com/bermanmaxim/AOWS
论文:https://arxiv.org/abs/2003.14058
代码:https://github.com/bhpfelix/MTLNAS
论文:https://arxiv.org/abs/2004.01961
代码:https://github.com/LiYingwei/AutoNL
作者团队:KAUST, Intel
论文链接:https://arxiv.org/pdf/1912.00195.pdf
代码地址:https://www.deepgcns.org/auto/sgas
作者团队:商汤、清华、Dian、华科
论文链接:https://arxiv.org/abs/2003.11236
论文链接:https://arxiv.org/abs/2004.05565
代码地址:https://github.com/facebookresearch/mobile-vision
作者团队:南加州、腾讯、港中文、港科大
论文链接:https://arxiv.org/abs/2003.12238
代码地址:https://github.com/chaoyanghe/MiLeNAS
作者团队:Facebook FAIR(何凯明团队)
论文链接:https://arxiv.org/abs/2003.13678
作者团队:Google,港中文
论文链接:https://arxiv.org/abs/1911.09074
作者团队:悉尼大学,南洋理工,商汤
论文链接:https://arxiv.org/abs/2001.01233
17.DSNAS: Direct Neural Architecture Search without Parameter Retraining
作者团队:港中文、UCLA、剑桥、商汤
论文链接:https://arxiv.org/abs/2002.09128
18.MobileDets: Searching for Object Detection Architectures for Mobile Accelerators
论文作者:谷歌、威斯康星大学麦迪逊分校
论文链接:https://arxiv.org/abs/2004.14525
论文:https://arxiv.org/abs/2005.09917
代码:https://github.com/zhengxiawu/rethinking_performance_estimation_in_NAS
解读1:https://www.zhihu.com/question/372070853/answer/1035234510
解读2:https://zhuanlan.zhihu.com/p/111167409
作者团队:港中文、 MIT
论文链接:https://arxiv.org/abs/1911.10695
代码地址:https://github.com/gmh14/RobNets