SAR ADC

逐次逼近寄存器型(SAR)的模拟数字转换器(ADC)是采样速率低于5Msps的中等至高分辨率应用的常见结构。SAR ADC的分辨率一般为8位至16位,具有低功耗、小尺寸等特点。这些特点使SAR ADC获得了很广的应用范围,例如便携式电池供电仪表、笔输入量化器、工业控制和数据信号采集器等。

    那末什么是SAR 呢? 顾名思义, SAR实质上是实现一种二进制搜索算法。所以,当内部电路运行在数兆赫兹(MHz)时,由于逐次逼近算法的缘故,故ADC采样速率仅是该数值的几分之一。为了使SAR ADC在很宽的范围上得到应用,那就应该对SAR(逐次逼近寄存器型)的ADC有一个全面的理解。首先对SAR ADC的结构分析。

模拟输入电压(VIN)由采样/保持电路保持。为实现二进制搜索算法,N位寄存器首先设置在中间刻度(即:100…00,MSB为‘1’)。这样,数字模拟转换器(DAC)输出(VDAC)被设为VREF/2,VREF是提供给ADC的基准电压。然后,比较判断VIN是小于还是大于VDAC,如果 VIN>VDAC,则比较器输出逻辑高电平或‘1’,N位寄存器的MSB保持‘1’。相反,如果VIN < VDAC ,则比较器输出逻辑低电平,N位寄存器的MSB清为‘0’。随后,SAR控制逻辑移至下一位,并将该位设置为高电平,进行下一次比较。这个过程一直持续到最低有效位(LSB)。上述操作结束后,也就完成了转换,N位转换结果储存在寄存器内。

    图2是一个4位转换器。y轴及图中的粗线表示DAC的输出电压。本例中,第一次比较表明VINVDAC,位2保持为‘1’。DAC置为01102,执行第三次比较。根据比较结果,位1置‘0’,DAC又设置为01012,执行最后一次比较。最后,由于V1N>VDAC,位0确定为‘1’。

    注意,对于4位ADC需要四个比较周期。通常,N位SAR ADC需要N个比较周期,在前一位转换完成之前不得进入下一次转换。由此可以看出,该类ADC能够有效节省功耗和空间,当然,也正是由于这个原因,分辨率在14位至16位,速率高于几Msps的逐次逼近ADC及其少见。一些基于SAR结构的微型ADC已经推向市场。例如,采用QSPITM串行接口的 MAXlll5-MAXlll8系列8位ADC以及采用微小的SOT23封装,分辨率更高的可互换产品-10位MAXl086和12位MAXl286,尺寸只有3mm×3mm。兼容于I2C接口的MAXl036/MAXl037可将四路、8位ADC和一个基准源集成在SOT23封装内。

    SAR ADC的另一个特点是,功率损耗随采样速率而改变,这一点与闪速ADC或流水线ADC不同,后者在不同的采样速率下具有固定的功耗。这仅对于低功耗应用或者不需要连续采集数据的应用是非常有利的(例如,用于PDA数字转换器的MAXl233)。 

SAR的深入分析

    SAR ADC的两个重要部件是比较端和DAC,可以看到,图1中采样/保持电路可以嵌入到DAC内,不作为一个独立的电路。

SAR ADC的速度受限于:

1、DAC的建立时间,在这段时间内必须稳定在整个转换器的分辨率以内(如:1/2 LSB)。

2、比较器,必须在规定的时间内能够分辨VIN与VDAC的微小差异。

3、逻辑开销。

你可能感兴趣的:(SAR ADC)