树状数组 区间修改+区间查询

详解:
http://www.cnblogs.com/lcf-2000/p/5866170.html

比线段树更快,也更简洁;
区间修改+单点查询维护差分数组即可;
但区间修改+区间查询需要维护两个树状数组;

#include
#include
#include
#include
using namespace std;
typedef long long ll;
const ll MAXN=100001;
ll n,m,c1[MAXN],c2[MAXN],a[MAXN];
void read(ll &a)
{
    char c=getchar();
    ll ans=0,flag=0;
    while(c<'0' || c>'9')
    {
        if(c=='-') flag=1;
        c=getchar();
    }
    while(c>='0' && c<='9')
    {
        ans*=10;
        ans+=c-'0';
        c=getchar();
    }
    if(flag) ans=-ans;
    else a=ans;
    return;
}
void add(ll i,ll x)
{
    ll s=i;
    while(i<=n)
    {
        c1[i]+=x;
        c2[i]+=s*x;
        i+=i&-i;
    }
    return;
}
ll sum(ll i)
{
    ll s=i,ans=0;
    while(i)
    {
        ans+=(s+1)*c1[i]-c2[i];
        i-=i&-i;
    }
    return ans;
}
void solve()
{
    scanf("%lld%lld",&n,&m);
    for(int i=1;i<=n;i++)
    {
        read(a[i]);
        add(i,a[i]-a[i-1]);
    }
    ll f,x,y,k;
    for(int i=1;i<=m;i++)
    {
        read(f),read(x),read(y);
        if(f==1)
        {
            read(k);
            add(x,k);
            add(y+1,-k);
        }
        else printf("%lld\n",sum(y)-sum(x-1));
    }
    return;
}
int main()
{
    solve();
    return 0;
}

你可能感兴趣的:(树状数组,学习笔记,模板)