Educational Codeforces Round 92 (Rated for Div. 2)

Educational Codeforces Round 92 (Rated for Div. 2)

原作者为 DOEMsy@cnblogs, 本作品采用 CC 4.0 BY-SA 进行许可,转载请注明出处。

最近被实验室的几个项目和论文压迫得没有时间刷题,和队友一起报名的牛客和hdu多校,分别在第一场被叉姐和朝鲜人教育,感觉实力明显退步,又滚回来刷题了。

https://codeforces.com/contest/1389

A. LCM Problem

题意

给定区间 \([l,r]\) ,求两个不同的数字 \(x,y\) ,使得 \(l\le x\lt y \le r,l\le LCM(x,y) \le r\)

解题

这道题和之前的一道求区间最大 \(gcd\) 的签到很像,感兴趣的可以去看看 Codeforces Round #651 (Div. 2) A. Maximum GCD 。

在这个题目中的条件可以整合为 \(l\le x \lt y \le lcm \le r\) ,所以我们只需要让 \(lcm\) 最小即可 。

\(x\)\(y\) 的最大公倍数最小为 \(lcm_{min}(x,y) = y = 2x\) ,此时令 \(x = l\) ,可以得到 \(lcm_{min} = y = 2l\) ,即为最小的答案。如果 \(2l>r\), 无解。

#include
#define ll long long

using namespace std;

int main(){

    //cin.tie(0);cout.tie(0);
    //ios::sync_with_stdio(false);
    //cout<>t;
    while(t--){
        ll l,r;cin>>l>>r;
        if(2*l>r)   cout<<"-1 -1"<

B. Array Walk

题意

给定数组 \(a_1,a_2,a_3,...,a_n\),起点为 \(a_1\) ,你可以向左向右移动,不能越界,最多 \(k\) 次。

并且限制不能连续的向左移动,且向左移动的次数最多为 \(z\)

每次移动到位置 \(i\) 可以获取分数 \(a_i\) ,初始分数为 \(a_1\) ,询问你可以得到的最大分数和。

解题

这个题在做的时候真的是一头雾水,本来以为模拟会超时,调试了半天差分(下标杀我),结果阎佬暴力过了。

这里讲下差分+数学优化的思路。

首先,向左移动不能连续,所以如果有向左移动,就只能以左右间隔的形式反复横跳。其次,以贪心的思想,最大和出现的情况,一定是只在某两个相邻位置之间反复横跳。

我们将移动分为三个阶段:

  • 第一阶段,假设初始向右移动了 \(i\) 步,那么当前处于的位置为 \(a_{i+1}\) ,积分和为 \(s_1 = sum_{i+1}\)(设 \(sum_i=\sum_{k=1}^i a_k\),即前 \(i\) 项和)。
  • 第二阶段,随后在 \(a_{i}\)\(a_{i+1}\) 之反复横跳,设此过程中向左次数最多为 \(p\) ,向右次数最多为 \(q\) ,则 \(p=min(z,\lceil\frac{k-i}{2}\rceil),q=min(p,k-i-p)\) ,得到的积分为 \(s_2 = p*a_i + q*a_{i+1}\)
  • 第三阶段,设剩余的步数为 \(k_1 = k-i-p-q\)
    • 如果 \(k_1>0\),全部用于向右移动,可以得到的积分为 \(s_3 = sum_{k_1+i+1} - sum_{i+1}\) (如果有剩余步,那么第二阶段结束后位置一定在 \(i+1\))。
    • 如果 \(k_1=0\),则 \(s_3 = 0\) ,且同时 \(i+1 = k-p-q+1\) ,即 \(sum_{i+1} = sum_{k-p-q+1}\),无论阶段二的落点是在 \(i\) 还是 \(i+1\)

三个阶段的总积分获取为 \(res = s_1+s_2+s_3 = sum_{k-p-q+1} + p*a_i + q*a_{i+1}\)

则最大积分和 \(ans = max\{res_i|res_i = sum_{k-p-q+1} + p*a_i + q*a_{i+1},i\in[1,k]\}\) ,复杂度 \(O(k)\)

#include
//#include
#define ll long long

#define fr(i,n) for(ll i=0;i=j;i--)

#define frrs(i,j,n,flag)    for(ll i=j;i=j&&flag;i--)


#define yes "yes"
#define no  "no"

#define memset0(dp) memset(dp,0,sizeof(dp))
#define min_get(a,b) a = min(a,b)
#define max_get(a,b) a = max(a,b)
#define PI  3.14159265354

#define print_arr(begin,end)    for(auto it = begin;it!=end;it++)  cout<<*it<<" "; cout<>a;return a;}
string  to_str(double a)    {stringstream ss;ss<inline void read(T &x){T f=1;x=0;char c=getchar();while(c<'0'||c>'9'){if(c=='-') f=-1;c=getchar();}while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}x*=f;}

ll a[1*e5];
ll sum[1*e5];

int main(){

    //cin.tie(0);cout.tie(0);
    //ios::sync_with_stdio(false);
    //cout<>t;
    while(t--){
        ll n,k,z;cin>>n>>k>>z;
        fr(i,n) cin>>a[i+1];

        ll ans = 0;
        sum[0] = 0;
        //sum[0,i)
        fr(i,n){
            sum[i+1] = sum[i] + a[i+1];
        }

        frr(i,1,k+1){
            ll p = min(1ll*z,(k+1-i)/2);
            ll q = min(1ll*p,k-i-p);
            ll res = sum[k-p-q+1]+p*a[i]+q*a[i+1]; 
            ans = max(ans,res);
        }

        cout<

C. Good String

题意

规定字符串 \(t_1,t_2,t_3,...,t_n\)

如果 \(t_n,t_1,t_2,...t_{n-3},t_{n-2},t_{n-1}\)\(t_2,t_3,t_4,...t_{n-1},t_n,t_1\) 完全相同,则称该字符串为 Good String 。

判断给定字符串至少删除多少个字符可以变成 Good String 。

解题

简单推导可以得到 Good String 中:

  • 如果 \(n\) 是偶数,\(t_1=t_3=t_5=...=t_{n-3}=t_{n-1}\)\(t_2 = t_4 = t_6 =...= t_{n-2} = t_n\) ,如 \(25252525\)
  • 如果 \(n\) 是奇数,\(t_1=t_2=t_3=...=t_{n-1} = t_{n}\) ,如 \(22222\)

而且题目规定 \(t_i\in[0,9]\) ,我们通过可以构造 \(10*10\) 种情况,分别算转化需要的最小花费。

复杂度 \(O(10^2n)\)

#include
//#include
#define ll long long

#define fr(i,n) for(ll i=0;i=j;i--)

#define frrs(i,j,n,flag)    for(ll i=j;i=j&&flag;i--)


#define yes "yes"
#define no  "no"

#define memset0(dp) memset(dp,0,sizeof(dp))
#define min_get(a,b) a = min(a,b)
#define max_get(a,b) a = max(a,b)
#define PI  3.14159265354

#define print_arr(begin,end)    for(auto it = begin;it!=end;it++)  cout<<*it<<" "; cout<>a;return a;}
string  to_str(double a)    {stringstream ss;ss<inline void read(T &x){T f=1;x=0;char c=getchar();while(c<'0'||c>'9'){if(c=='-') f=-1;c=getchar();}while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}x*=f;}


int main(){

    //cin.tie(0);cout.tie(0);
    //ios::sync_with_stdio(false);
    //cout<>t;
    while(t--){
        string s;cin>>s;
        int a[2];
        int ans = 9999999;
        fr(i,10) fr(j,10){
            a[0] = i,a[1] = j;
            int ct = 0,k = 0;
            fr(i,s.size()){
                if(s[i]!=a[k&1]+'0') ct++;
                else    k = !k;
            }
            if(int(s.size()-ct)&1) if(i!=j)	ct++;	//只有全相等才能为奇数
            ans = min(ans,ct);
            //cout<

D. Segment Intersections

题意

给定两个线段数组 \(a,b\),初始 \(a\) 中所有线段等于 \([l_1,r_1]\)\(b\) 中所有线段等于 \([l_2,r_2]\)

每次操作可以选择两组中任意一个线段,使其长度+1。

问最少多少次操作使得 \(\sum\limits_{i=1}^{n}{\text{intersection_length}([al_i, ar_i], [bl_i, br_i])}\ge k\)\(\text{intersection_length}\) 表示相交长度。

解题

可以通过开销将重叠部分分为三种:

Educational Codeforces Round 92 (Rated for Div. 2)_第1张图片

  • 0 花费 原本就重叠的部分
  • 1 花费 只需要延长一根线段就可以重叠的部分
  • 2 花费 需要同时延长两根线段得到的重叠

你有 \(n\) 对一模一样的这样的线段,所以每个重叠部分最多可以计算 \(n\) 次。

现在就变成了一道贪心题,优先选择低开销操作,复杂度 \(O(1)\)

#include
//#include
#define ll long long

#define fr(i,n) for(ll i=0;i=j;i--)

#define frrs(i,j,n,flag)    for(ll i=j;i=j&&flag;i--)


#define yes "yes"
#define no  "no"

#define memset0(dp) memset(dp,0,sizeof(dp))
#define min_get(a,b) a = min(a,b)
#define max_get(a,b) a = max(a,b)
#define PI  3.14159265354

#define print_arr(begin,end)    for(auto it = begin;it!=end;it++)  cout<<*it<<" "; cout<>a;return a;}
string  to_str(double a)    {stringstream ss;ss<inline void read(T &x){T f=1;x=0;char c=getchar();while(c<'0'||c>'9'){if(c=='-') f=-1;c=getchar();}while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}x*=f;}

int main(){

    //cin.tie(0);cout.tie(0);
    //ios::sync_with_stdio(false);
    //cout<>t;
    while(t--){
        ll n,k;cin>>n>>k;
        ll la,ra,lb,rb;
        cin>>la>>ra>>lb>>rb;
        ll ans = 0;
        ll x0 = min(ra,rb)-max(la,lb);//原相交部分,开销为0
        k -= n*max(0ll,x0);
        if(k<=0){cout<

你可能感兴趣的:(Educational Codeforces Round 92 (Rated for Div. 2))