【算法编程】基于Miller-Rabin的大素数测试

基本原理

费尔马小定理:如果p是一个素数,0a^(p-1)%p=1.
       利用费尔马小定理,对于给定的整数n,可以设计素数判定算法,通过计算d=a^(n-1)%n来判断n的素性,d!=1,n肯定不是素数,d=1,n  很可能是素数.

二次探测定理:如果p是一个素数,0则方程x^2%p=1的解为:x=1x=p-1.
       利用二次探测定理,可以再利用费尔马小定理计算a^(n-1)%n的过程中增加对整数n的二次探测,一旦发现违背二次探测条件,即得出n不是素数的结论.
    
    如果n是素数,(n-1)必是偶数,因此可令(n-1)=m*(2^q),其中m是正奇数(n是偶数,则上面的m*(2^q)一定可以分解成一个正奇数乘以2k次方的形式 ),q是非负整数,考察下面的测试:
    序列:
         a^m%n; a^(2m)%n; a^(4m)%n; ……;a^(m*2^q)%n

Miller-Rabin素性测试伪代码描述:

1、找出整数k,q,其中k>0,q是奇数,使(n-1=2kq)。

2、随机选取整数a,1

3、Ifamod n=1, printf("该数可能是素数!\n");

4、Forj=0 to k-1 , if a^(2^j*q) mod n = n – 1, printf("该数可能是素数!\n");如果步骤3、4都不成立,则printf("该数肯定不是素数!\n")

5、当该数可能是素数时,随机选取整数a,1。若多次都表明可能是素数,则我们有理由相信该数是素数。


具体代码实现 

1.、BigInt.h文件

#ifndef _BIGNUM_H_

#define _BIGNUM_H_

#define SIZE                128  //一个大整数用个字节保存,最多表示位大整数

#define SIZE_2                   2* SIZE

typedef unsigned char       UCHAR;

typedef unsigned short      USHORT;


UCHAR atox(char ch);  //将一个十六进制的字符(4位)转位数字,转换失败返回xff 

typedef struct BigNum  //大整数结构

{

UCHAR data[SIZE];  //空间为(SIZE * sizeof(UCHAR)),就是SIZE个字节

}BigNum;

BigNum Init(char *str);  //初始化大整数,str为十六进制字符串 

int GetBitFront(BigNum bignum); //有多少bit (前面的0不算)

int GetBitEnd(BigNum bignum);  //有多少0(即只算末尾的0个数) 

BigNum MovBitLetf(BigNum bignum, int n);//向左移n位

BigNum MovBitRight(BigNum bignum, int n);  //右移n位
 
int Cmp(BigNum bignum_a, BigNum bignum_b);  //大整数比较大小,>返回1,<返回-1,==返回0

BigNum Mod(BigNum bignum_a, BigNum bignum_b);  //大整数模运算

BigNum Sub(BigNum bignum_a, BigNum bignum_b);  //大整数减法

void print2(BigNum bignum); //以二进制打印

BigNum Mul(BigNum bignum_a, BigNum bignum_b);  //大整数乘法

BigNum Div(BigNum bignum_a, BigNum bignum_b);  //大整数除法

BigNum Add(BigNum bignum_a, BigNum bignum_b);  //大整数加法

void print10(BigNum bignum);//以十进制打印

int b2d(BigNum bignum);  //二进制到转十进制

BigNum modMDyn(BigNum a, BigNum power, BigNum mod); //求大整数幂的模

BigNum d2b(int num); //十进制转二进制

int checkprime(BigNum n,BigNum a);

#endif
2. BigInt.c文件:

 #include 

#include

#include 

#include "BigInt.h"

#include "math.h"

#include

void print2(BigNum bignum)//以二进制打印

{  

if(GetBitFront(bignum)==0)

        printf("0\n");

else

{

        for(int i=SIZE-GetBitFront(bignum);i=0;i--)

        bignum.data[i]='0';

return bignum;

}

 

int GetBitFront(BigNum bignum)  //有多少bit(前面的0不算)

{

int BitOfBigNum = SIZE;

int i=0;

while ((bignum.data[i] == '0')&& (BitOfBigNum > 0))

{

        i++;

        BitOfBigNum--;

}

return BitOfBigNum;

}

 

int GetBitEnd(BigNum bignum)  //有多少0(即只算末尾的0个数)

{

int BitOfBigNum = SIZE;

int num=0;

while ((bignum.data[BitOfBigNum -1] == '0') && (BitOfBigNum > 0))

{

        num++;

        BitOfBigNum--;

}

return num;

}

 

BigNum MovBitLetf(BigNum bignum, int n)//向左移n位

{

int bignum_len =GetBitFront(bignum);

for (int i =SIZE- bignum_len; i=SIZE-bignum_len; i--)

{

        if (i<0)

        {

               continue;

        }

        bignum.data[i] =bignum.data[i-n];

}

for (i =0; i 返回1,<返回-1,==返回0

{

int bignum_a_len =GetBitFront(bignum_a);

int bignum_b_len =GetBitFront(bignum_b);

if(bignum_a_len>bignum_b_len)return 1;

if(bignum_a_len bignum_b.data[i])

               {

                      return 1;

               }

               if (bignum_a.data[i]< bignum_b.data[i])

               {

                      return -1;

               }

        }

}

return 0;

}

 

BigNum Sub(BigNum bignum_a, BigNum bignum_b)  //大整数减法

{

BigNum bignum_c;

int temp=0;

int temp1=0;

int carry = 0;

int i;

int j=0;

for (i = SIZE-1; i >=0; i--)

{

        temp = bignum_a.data[i] -bignum_b.data[i] -carry;

        temp1=temp;

        if(temp==-1)

               temp1=1;

        if(temp==-2)

               temp1=0;     

        bignum_c.data[i] =temp1+48;

        if(temp<0)

        carry=1;

        else

        carry=0;

        j++;

}

return bignum_c;

}

 

BigNum Mod(BigNum bignum_a, BigNum bignum_b)  //大整数模运算

{

BigNum bignum_c =Init("0");

BigNum B;

B = bignum_b;

int bignum_a_len;

int bignum_b_len;

int bignum_c_len;

if (Cmp(bignum_b, bignum_c) == 0)

{

        printf("错误!除数为\n");

        return bignum_c;

}

bignum_a_len =GetBitFront(bignum_a);

bignum_b_len =GetBitFront(bignum_b);

bignum_c_len = bignum_a_len -bignum_b_len;

 

while (bignum_c_len >= 0)

{  

        B = MovBitLetf(bignum_b,bignum_c_len);

        int m=0;

        m=Cmp(bignum_a, B);

        while (Cmp(bignum_a, B) !=-1)//大于等于

        {

               bignum_a =Sub(bignum_a, B);

        }

        bignum_c_len--; 

}     

return bignum_a;

}

 

BigNum Mul(BigNum bignum_a, BigNum bignum_b)  //大整数乘法

{

BigNum bignum_c =Init("0");

BigNum bignum=Init("0");

int wei=0;

wei=GetBitFront(bignum_a)+GetBitFront(bignum_b)-1;

 

int carry[SIZE_2];

int carry1[SIZE_2];

int mod[SIZE_2];

for(int k=0;k<=SIZE_2;k++)

{

        carry[k]=0;

        carry1[k]=0;

        mod[k]=0;

}

 

int i=0;

int j=0;


for(i=SIZE-1;i>=0;i--)

{

        for(j=SIZE-1;j>=0;j--)

          carry[i+j+1]=(bignum_a.data[i]-48)*(bignum_b.data[j]-48)+carry[i+j+1];


}

        for(k=SIZE_2-1;k>=0;k--)

        {

          if(k==SIZE_2-1)

                 carry1[k]=carry[k];  

          else

                 carry1[k]=carry1[k+1]/2+carry[k];

        }

 

 

       

        wei=GetBitFront(bignum_a)+GetBitFront(bignum_b)-1;

        bignum=d2b(carry1[SIZE_2-wei]);

        for(i=SIZE-1,j=SIZE_2-wei;i>=0&&j>=0;i--,j--)

              carry1[j]=bignum.data[i]-48;

        for(k=0;k=k;i--,j--)

        {

               bignum_c.data[i]=carry1[j]%2+48;

        }

 

return bignum_c;

}

 

BigNum Div(BigNum bignum_a, BigNum bignum_b)  //大整数除法

{

BigNum bignum_c =Init("0");

BigNum B;

int bignum_a_len;

int bignum_b_len;

int bignum_c_len;

if (Cmp(bignum_b, bignum_c) == 0)

{

        printf("错误!除数为\n");

        return bignum_c;

}

bignum_a_len =GetBitFront(bignum_a);

bignum_b_len = GetBitFront(bignum_b);

bignum_c_len = bignum_a_len -bignum_b_len;

while (bignum_c_len >= 0)

{

        B = MovBitLetf(bignum_b,bignum_c_len);

        while (Cmp(bignum_a, B) !=-1)

        {

               bignum_a =Sub(bignum_a, B);

               bignum_c.data[SIZE-1-bignum_c_len]++;

        }

        bignum_c_len--;

}

return bignum_c;

}

 

BigNum Add(BigNum bignum_a, BigNum bignum_b)  //大整数加法

{

BigNum bignum_c;

int temp;

int carry = 0;

int i;

for (i = SIZE-1; i>=0; i--)

{

        temp = bignum_a.data[i]-48+ bignum_b.data[i]-48 + carry;

       

        if(temp==2)

        {

               temp=0;

            carry=1;

        }

        else if(temp==3)

        {

               temp=1;

               carry=1;

        }

        else carry=0;

        bignum_c.data[i] = temp+48;

}

return bignum_c;

}

 

int b2d(BigNum bignum) //二进制转十进制

{

int n=0;

int j=0;

int result=0;

n=GetBitFront(bignum);

    for(int i=SIZE-1;i>=0;i--)

{

        result=result+(bignum.data[i]-48)*pow(2,j);

        j++;

}

return result;

}

 

void print10(BigNum bignum)  //打印十进制大整数

{

int temp[SIZE];

int i = 0;

int j;

BigNum c;


while (Cmp(bignum,Init("0")) == 1)

{

        c=Mod(bignum,Init("1010"));

        temp[i] = b2d(c);

        bignum = Div(bignum,Init("1010"));

 

        i++;

}

for (j = i - 1; j >= 0; j--)

{

        printf("%d",temp[j]);

}

printf("\n");

}

BigNum modMDyn(BigNum a, BigNum power, BigNum mod) //求大整数幂的模 

{ 

   BigNum temp;

   BigNum result;

   BigNum t1;

   temp=Mod(a,mod);

   result=Init("1");

   for(inti=SIZE-1;i>=SIZE-GetBitFront(power);i--)

   {

               if(power.data[i]=='1')

               {     

                      t1=Mul(result,temp);

                   result=Mod(Mul(result,temp),mod);

               }     

               temp=Mod(Mul(temp,temp),mod);

   }

 

   return result; 

} 

BigNum d2b(int num) //十进制转二进制

{

BigNum bignum;

bignum=Init("0");

int a=0;

int b=0;

int i=1;

while(num>0)

{

        a=num%2;

        num=num/2;

        bignum.data[SIZE-i]=a+48;

        i++;

}

    return bignum;

}

int checkprime(BigNum n,BigNum a)

{

BigNum k;

BigNum q;

//     BigNum a;

BigNum n1;//n1=n-1

BigNum num1;//num1为常数1

BigNum num2;//num2为常数2

BigNum k2;//2^k

BigNum k22;

    int k1=0; //末尾0的个数

num1=Init("1");

num2=Init("10");

k=Init("0");

q=Init("0");

n1=Init("0");

k22=Init("10");

//     a=Init("1010");//选择的数

n1=Sub(n,num1);

k1=GetBitEnd(n1);

k=d2b(k1);

q=MovBitRight(n1,k1);

k2=Div(n1,q);

if(Cmp(modMDyn(a,q,n),num1)==0)

{

//    print2(n);

//    printf("该数可能是素数!\n");

        return 1;

}

    for(int i=0;i

运行结果如下:

【算法编程】基于Miller-Rabin的大素数测试_第1张图片


原文:http://blog.csdn.net/tengweitw/article/details/23952839

作者:nineheadedbird


你可能感兴趣的:(C/C++,算法)