结果报错
[ INFO:0] global C:\build\master_winpack-build-win64-vc14\opencv\modules\core\src\ocl.cpp (891) cv::ocl::haveOpenCL Initialize OpenCL runtime…
[ INFO:0] global C:\build\master_winpack-build-win64-vc14\opencv\modules\videoio\src\videoio_registry.cpp (187) cv::`anonymous-namespace’::VideoBackendRegistry::VideoBackendRegistry VIDEOIO: Enabled backends(7, sorted by priority): FFMPEG(1000); GSTREAMER(990); INTEL_MFX(980); MSMF(970); DSHOW(960); CV_IMAGES(950); CV_MJPEG(940)
[ INFO:0] global C:\build\master_winpack-build-win64-vc14\opencv\modules\videoio\src\backend_plugin.cpp (353) cv::impl::getPluginCandidates Found 2 plugin(s) for FFMPEG
[ INFO:0] global C:\build\master_winpack-build-win64-vc14\opencv\modules\videoio\src\backend_plugin.cpp (172) cv::impl::DynamicLib::libraryLoad load E:\opencv\build\x64\vc14\bin\opencv_videoio_ffmpeg420_64.dll => OK
[ INFO:0] global C:\build\master_winpack-build-win64-vc14\opencv\modules\videoio\src\backend_plugin.cpp (233) cv::impl::PluginBackend::PluginBackend Video I/O: loaded plugin ‘FFmpeg OpenCV Video I/O plugin’
不明白这是什么意思,希望有大佬告诉我一下
#include
#include
#include //srand()和rand()函数
#include //time()函数
#include
#include
#include
#include
#include
#define INRIANegativeImageList "D:\\INRIAPerson\\Train\\neg.lst" //原始负样本图片文件列表
#define cropNegNum 1220
//负样本图片个数
using namespace std;
using namespace cv;
int CropImageCount = 0; //裁剪出来的负样本图片个数
int main()
{
Mat src;
string ImgName;
char saveName[256];//裁剪出来的负样本图片文件名
ifstream fin(INRIANegativeImageList);//打开原始负样本图片文件列表
int num = 0;
//一行一行读取文件列表
while (getline(fin, ImgName))
{
cout << "处理:" << ImgName << endl;
ImgName = "D:\\INRIAPerson\\" + ImgName;
src = imread(ImgName, 1);//读取彩色图片
//src =cvLoadImage(imagename,1);//c的接口,
cout<<"宽:"<<src.cols<<",高:"<<src.rows<<endl;
//图片大小应该能能至少包含一个64*128的窗口
if (src.cols >= 64 && src.rows >= 128)
{
srand((unsigned int)time(NULL));//设置随机数种子
//从每张图片中随机裁剪10个64*128大小的不包含人的负样本
for (int i = 0; i < 10; i++)
{
int x = (rand() % (src.cols - 64)); //左上角x坐标
int y = (rand() % (src.rows - 128)); //左上角y坐标
//cout<
Mat imgROI = src(Rect(x, y, 64, 128));
//Rect rect(400,400,300,300);
// Mat image_cut = Mat(img, rect);
sprintf(saveName, "D:\\INRIAPerson\\newneg\\noperson%06d.jpg", ++CropImageCount);//生成裁剪出的负样本图片的文件名
imwrite(saveName, imgROI);//保存文件
// //保存裁剪得到的图片名称到txt文件,换行分隔
//if (i < (cropNegNum - 1)) {
// fout << "neg" << i << "Cropped" << num++ << ".png" << endl;
//}
//else if (i == (cropNegNum - 1) && j < 4) {
// fout << "neg" << i << "Cropped" << num++ << ".png" << endl;
//}
//else {
// fout << "neg" << i << "Cropped" << num++ << ".png";
//}
}
}
}
cout << "总共裁剪出" << CropImageCount << "张图片" << endl;
cin.get();
return 0;
}
#include "opencv2/core/core.hpp"
#include "opencv2/objdetect.hpp"
#include "opencv2/core/cuda.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/video/video.hpp"
#include "opencv2/ml.hpp"
#include "opencv2/opencv.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace cv;
using namespace cv::ml;
//函数声明
void get_svm_detector(const Ptr< SVM > & svm, vector< float > & hog_detector);
void convert_to_ml(const std::vector< Mat > & train_samples, Mat& trainData);
void load_images(const String & dirname, vector< Mat > & img_lst, bool showImages);
void sample_neg(const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size);
void computeHOGs(const Size wsize, const vector< Mat > & img_lst, vector< Mat > & gradient_lst);
int test_trained_detector(String obj_det_filename, String test_dir, String videofilename);
//函数定义
void get_svm_detector(const Ptr< SVM >& svm, vector< float > & hog_detector)
{
// get the support vectors
Mat sv = svm->getSupportVectors();
const int sv_total = sv.rows;
// get the decision function
Mat alpha, svidx;
double rho = svm->getDecisionFunction(0, alpha, svidx);
CV_Assert(alpha.total() == 1 && svidx.total() == 1 && sv_total == 1); //括号中的条件不满足时,返回错误
CV_Assert((alpha.type() == CV_64F && alpha.at<double>(0) == 1.) ||
(alpha.type() == CV_32F && alpha.at<float>(0) == 1.f));
CV_Assert(sv.type() == CV_32F);
hog_detector.clear();
hog_detector.resize(sv.cols + 1);
memcpy(&hog_detector[0], sv.ptr(), sv.cols * sizeof(hog_detector[0])); //memcpy指的是c和c++使用的内存拷贝函数,memcpy函数的功能是从源src所指的内存地址的起始位置开始拷贝n个字节到目标dest所指的内存地址的起始位置中。
hog_detector[sv.cols] = (float)-rho;
}
/*
* Convert training/testing set to be used by OpenCV Machine Learning algorithms.
* TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1.
* Transposition of samples are made if needed.
*/
void convert_to_ml(const vector< Mat > & train_samples, Mat& trainData)
{
//--Convert data
const int rows = (int)train_samples.size(); //行数等于训练样本个数
const int cols = (int)std::max(train_samples[0].cols, train_samples[0].rows); //列数取样本图片中宽度与高度中较大的那一个
Mat tmp(1, cols, CV_32FC1); //< used for transposition if needed
trainData = Mat(rows, cols, CV_32FC1);
for (size_t i = 0; i < train_samples.size(); ++i)
{
CV_Assert(train_samples[i].cols == 1 || train_samples[i].rows == 1);
if (train_samples[i].cols == 1)
{
transpose(train_samples[i], tmp);
tmp.copyTo(trainData.row((int)i));
}
else if (train_samples[i].rows == 1)
{
train_samples[i].copyTo(trainData.row((int)i));
}
}
}
void load_images(const String & dirname, vector< Mat > & img_lst, bool showImages = false)
{ //载入目录下的图片样本
vector< String > files;
glob(dirname, files); //返回一个包含有匹配文件/目录的数组。出错则返回false
for (size_t i = 0; i < files.size(); ++i)
{
Mat img = imread(files[i]); // load the image
if (img.empty()) // invalid image, skip it.
{
cout << files[i] << " is invalid!" << endl;
continue;
}
if (showImages)
{
imshow("image", img);
waitKey(1);
}
img_lst.push_back(img);//将Img压入img_lst
}
}
void sample_neg(const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size)
{ //该函数对每一个负样本采样出一个随机的64*128尺寸的样本,由于之前已经采样过了,所以main函数中没有使用该函数
Rect box;
box.width = size.width; //等于检测器宽度
box.height = size.height; //等于检测器高度
const int size_x = box.width;
const int size_y = box.height;
srand((unsigned int)time(NULL)); //生成随机数种子
for (size_t i = 0; i < full_neg_lst.size(); i++)
{ //对每个负样本进行裁剪,随机指定x,y,裁剪一个尺寸为检测器大小的负样本
box.x = rand() % (full_neg_lst[i].cols - size_x);
box.y = rand() % (full_neg_lst[i].rows - size_y);
Mat roi = full_neg_lst[i](box);
neg_lst.push_back(roi.clone());
}
}
void computeHOGs(const Size wsize, const vector< Mat > & img_lst, vector< Mat > & gradient_lst)
{ //计算HOG特征
HOGDescriptor hog;
hog.winSize = wsize;
Rect r = Rect(0, 0, wsize.width, wsize.height);
r.x += (img_lst[0].cols - r.width) / 2; //正样本图片的尺寸减去检测器的尺寸,再除以2
r.y += (img_lst[0].rows - r.height) / 2;
Mat gray;
vector< float > descriptors;
for (size_t i = 0; i < img_lst.size(); i++)
{
cvtColor(img_lst[i](r), gray, COLOR_BGR2GRAY);
hog.compute(gray, descriptors, Size(8, 8), Size(0, 0)); //Size(8,8)为窗口移动步长,
gradient_lst.push_back(Mat(descriptors).clone());
}
}
int test_trained_detector(String obj_det_filename, String test_dir, String videofilename)
{ //当videofilename为空,则只检测图片中的行人
cout << "Testing trained detector..." << endl;
HOGDescriptor hog;
hog.load(obj_det_filename);
vector< String > files;
glob(test_dir, files);
int delay = 0;
VideoCapture cap;
if (videofilename != "")
{
cap.open(videofilename);
}
obj_det_filename = "testing " + obj_det_filename;
namedWindow(obj_det_filename, WINDOW_NORMAL);
for (size_t i = 0;; i++)
{
Mat img;
if (cap.isOpened())
{
cap >> img;
delay = 1;
}
else if (i < files.size())
{
img = imread(files[i]);
}
if (img.empty())
{
return 0;
}
vector< Rect > detections;
vector< double > foundWeights;
hog.detectMultiScale(img, detections, foundWeights);
for (size_t j = 0; j < detections.size(); j++)
{
if (foundWeights[j] < 0.5) continue; //清楚权值较小的检测窗口
Scalar color = Scalar(0, foundWeights[j] * foundWeights[j] * 200, 0);
rectangle(img, detections[j], color, img.cols / 400 + 1);
}
imshow(obj_det_filename, img);
if (27 == waitKey(delay))
{
return 0;
}
}
return 0;
}
int main(int argc, char** argv)
{
const char* keys =
{
"{help h| | show help message}"
"{pd | D:/INRIAPerson/true_train_pos1 | path of directory contains possitive images}"
"{nd | D:/INRIAPerson/newneg | path of directory contains negative images}"
"{td | D:/INRIAPerson/true_test_pos2 | path of directory contains test images}"
"{tv | | test video file name}"
"{dw | 64 | width of the detector}"
"{dh | 128 | height of the detector}"
"{d |false| train twice}"
"{t |true| test a trained detector}"
"{v |false| visualize training steps}"
"{fn |D:/INRIAPerson/my_detector.yml| file name of trained SVM}"
};
CommandLineParser parser(argc, argv, keys); //命令行函数,读取keys中的字符, 其中key的格式为:名字 简称| 内容 |提示字符。
if (parser.has("help"))
{
parser.printMessage();
exit(0);
}
String pos_dir = parser.get< String >("pd"); //正样本目录
String neg_dir = parser.get< String >("nd"); //负样本目录
String test_dir = parser.get< String >("td"); //测试样本目录
String obj_det_filename = parser.get< String >("fn"); //训练好的SVM检测器文件名
String videofilename = parser.get< String >("tv"); //测试视频
int detector_width = parser.get< int >("dw"); //检测器宽度
int detector_height = parser.get< int >("dh"); //检测器高度
bool test_detector = parser.get< bool >("t"); //测试训练好的检测器
bool train_twice = parser.get< bool >("d"); //训练两次
bool visualization = parser.get< bool >("v"); //训练过程可视化(建议false,不然爆炸)
//根据评论,以下5行代码在初次运行时,请注释掉。该段代码是为了对已经训练好的模型进行测试的,初次运行时,因为还未有任何模型参数,所以可能会报错。
//if (test_detector) //若为true,测对测试集进行测试
//{
// test_trained_detector(obj_det_filename, test_dir, videofilename);
// exit(0);
//}
if (pos_dir.empty() || neg_dir.empty()) //检测非空
{
parser.printMessage();
cout << "Wrong number of parameters.\n\n"
<< "Example command line:\n" << argv[0] << " -pd=/INRIAPerson/96X160H96/Train/pos -nd=/INRIAPerson/neg -td=/INRIAPerson/Test/pos -fn=HOGpedestrian96x160.yml -d\n"
<< "\nExample command line for testing trained detector:\n" << argv[0] << " -t -dw=96 -dh=160 -fn=HOGpedestrian96x160.yml -td=/INRIAPerson/Test/pos";
exit(1);
}
vector< Mat > pos_lst, //正样本图片向量
full_neg_lst, //负样本图片向量
neg_lst, //采样后的负样本图片向量
gradient_lst; //HOG描述符存入到该梯度信息里面
vector< int > labels; //标签向量
clog << "Positive images are being loaded...";
load_images(pos_dir, pos_lst, visualization); //加载图片 pos正样本的尺寸为96*160
if (pos_lst.size() > 0)
{
clog << "...[done]" << endl;
}
else
{
clog << "no image in " << pos_dir << endl;
return 1;
}
Size pos_image_size = pos_lst[0].size(); //令尺寸变量pos_image_size=正样本尺寸
//检测所有正样本是否具有相同尺寸
for (size_t i = 0; i < pos_lst.size(); ++i)
{
if (pos_lst[i].size() != pos_image_size)
{
cout << "All positive images should be same size!" << endl;
exit(1);
}
}
pos_image_size = pos_image_size / 8 * 8;
//令pos_image_size的尺寸为检测器的尺寸
if (detector_width && detector_height)
{
pos_image_size = Size(detector_width, detector_height);
}
labels.assign(pos_lst.size(), +1); //assign()为labels分配pos_lst.size()大小的容器,用+1填充 表示为正样本
const unsigned int old = (unsigned int)labels.size(); //旧标签大小
clog << "Negative images are being loaded...";
load_images(neg_dir, neg_lst, false); //加载负样本图片
//sample_neg(full_neg_lst, neg_lst, pos_image_size);
clog << "...[done]" << endl;
labels.insert(labels.end(), neg_lst.size(), -1); //在labels向量的尾部添加neg_lst.size()大小的容器,用-1填充 表示为负样本
CV_Assert(old < labels.size()); //CV_Assert()作用:CV_Assert()若括号中的表达式值为false,则返回一个错误信息。
clog << "Histogram of Gradients are being calculated for positive images...";
computeHOGs(pos_image_size, pos_lst, gradient_lst); //计算正样本图片的HOG特征
clog << "...[done]" << endl;
clog << "Histogram of Gradients are being calculated for negative images...";
computeHOGs(pos_image_size, neg_lst, gradient_lst); //计算负样本图片的HOG特征
clog << "...[done]" << endl;
Mat train_data;
convert_to_ml(gradient_lst, train_data); //转化为ml所需的训练数据形式
clog << "Training SVM...";
Ptr< SVM > svm = SVM::create();
/* Default values to train SVM */
svm->setCoef0(0.0);
svm->setDegree(3);
svm->setTermCriteria(TermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 1000, 1e-3));
svm->setGamma(0);
svm->setKernel(SVM::LINEAR); //采用线性核函,其他的sigmoid 和RBF 可自行设置,其值由0-5。
svm->setNu(0.5);
svm->setP(0.1); // for EPSILON_SVR, epsilon in loss function?
svm->setC(0.01); // From paper, soft classifier
svm->setType(SVM::EPS_SVR); // C_SVC; // EPSILON_SVR; // may be also NU_SVR; // do regression task
svm->train(train_data, ROW_SAMPLE, Mat(labels));
clog << "...[done]" << endl;
//训练两次
if (train_twice)
{
clog << "Testing trained detector on negative images. This may take a few minutes...";
HOGDescriptor my_hog;
my_hog.winSize = pos_image_size;
// Set the trained svm to my_hog
vector< float > hog_detector;
get_svm_detector(svm, hog_detector);
my_hog.setSVMDetector(hog_detector);
vector< Rect > detections;
vector< double > foundWeights;
for (size_t i = 0; i < full_neg_lst.size(); i++)
{
my_hog.detectMultiScale(full_neg_lst[i], detections, foundWeights);
for (size_t j = 0; j < detections.size(); j++)
{
Mat detection = full_neg_lst[i](detections[j]).clone();
resize(detection, detection, pos_image_size);
neg_lst.push_back(detection);
}
if (visualization)
{
for (size_t j = 0; j < detections.size(); j++)
{
rectangle(full_neg_lst[i], detections[j], Scalar(0, 255, 0), 2);
}
imshow("testing trained detector on negative images", full_neg_lst[i]);
waitKey(5);
}
}
clog << "...[done]" << endl;
labels.clear();
labels.assign(pos_lst.size(), +1);
labels.insert(labels.end(), neg_lst.size(), -1);
gradient_lst.clear();
clog << "Histogram of Gradients are being calculated for positive images...";
computeHOGs(pos_image_size, pos_lst, gradient_lst);
clog << "...[done]" << endl;
clog << "Histogram of Gradients are being calculated for negative images...";
computeHOGs(pos_image_size, neg_lst, gradient_lst);
clog << "...[done]" << endl;
clog << "Training SVM again...";
convert_to_ml(gradient_lst, train_data);
svm->train(train_data, ROW_SAMPLE, Mat(labels));
clog << "...[done]" << endl;
}
vector< float > hog_detector; //定义hog检测器
get_svm_detector(svm, hog_detector); //得到训练好的检测器
HOGDescriptor hog;
hog.winSize = pos_image_size; //窗口大小
hog.setSVMDetector(hog_detector);
hog.save(obj_det_filename); //保存分类器
test_trained_detector(obj_det_filename, test_dir, videofilename); //检测训练集
return 0;
system("pause");
}
检测得到的.yml文件只有69K