- Python数据分析学习笔记:字符串统计
NIKEeri
pythonpandas字符串匹配python数据分析学习
一、题目来源KagglePandas-Exercise:SummaryFunctionsandMaps章节二、题目要求描述一瓶葡萄酒时,可用的词汇有限。哪种词出现频率更高:“tropical”还是“fruity”?统计description列中这两个词的出现次数。忽略大小写。三、我的思路(使用str.contains统计总次数)tropical_count=reviews['description
- python数据分析scipy库安装与使用
范哥来了
python数据分析scipy
安装scipy库scipy是一个用于科学计算的Python库,它依赖于numpy。如果你还没有安装scipy,可以使用以下命令来安装:pipinstallscipy或者,如果你使用的是Anaconda环境,可以通过conda来安装:condainstallscipy使用scipy库scipy提供了许多用于科学计算的功能,包括统计、优化、积分、线性代数等。下面是一些常见的用法示例。1.导入scipy
- Python,C++开发上市辅导方法与实操APP
Geeker-2025
pythonc++
#上市辅导方法与实操APP-Python与C++综合解决方案下面是一个完整的上市辅导方法与实操APP的实现方案,结合Python和C++的优势,涵盖金融建模、合规分析、流程管理等多个方面:```mermaidgraphTDA[上市辅导系统]-->B[核心引擎]A-->C[应用平台]B-->D[C++金融计算引擎]B-->E[Python数据分析]B-->F[合规检查系统]C-->G[Web管理平台
- 《python 数据分析 从入门到精通》读书笔记|了解数据分析|数据分析基础知识
《python数据分析从入门到精通》读书笔记第一章:了解数据分析1.1什么是数据分析数据分析是利用数学、统计学理论与实践相结合的科学统计分析方法,对Excel数据、数据库中的数据、收集的大量数据、网页抓取的数据进行分析,从中提取有价值的信息并形成结论进行展示的过程。数据分析实际上是通过数据的规律来解决业务问题,以帮助实际工作中的管理者做出判断和决策。数据分析包括以下几个主要内容:(1)现状分析:分
- 【python数据分析】数据建模之Kmeans聚类
斑点鱼 SpotFish
python数据建模聚类python数据分析
K-means聚类:最常用的机器学习聚类算法,且为典型的基于距离的聚类算法。K均值:基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇以欧式距离作为相似度测度Kmeans聚类案例分析:make_blobs聚类数据生成器#导入模块from sklearn.cluster import KMeansfromsklearn.datasetsimportmake_blobs#创建数据x,y_tr
- Python 数据分析与机器学习入门 (一):环境搭建与核心库概览
程序员阿超的博客
Pythonpython数据分析机器学习入门教程环境搭建AnacondaJupyterNotebook
Python数据分析与机器学习入门(一):环境搭建与核心库概览本文摘要本文是Python数据分析与机器学习入门系列的第一篇,专为初学者设计。文章首先阐明了Python在数据科学领域的优势,然后手把手指导读者如何使用Anaconda搭建一个无痛、专业的开发环境,并介绍了强大的交互式工具JupyterNotebook的基本操作。最后,简要概览了NumPy、Pandas、Scikit-learn等核心库
- 物流数据行业分析(包含完整代码和流程)------python数据分析师项目Anaconda
欲梦yhd
数据分析项目大数据condapython
一、引言数据分析流程为明确目的、获取数据、数据探索和预处理、分析数据、得出结论、验证结论、结果展现。物流业务中对数据进行深入挖掘和分析的过程,旨在提高运输效率、降低运输成本、提高客户满意度,以及提高公司的竞争力。本案例物流数据分析目的:a、配送服务是否存在问题b、是否存在尚有潜力的销售区域c、商品是否存在质量问题二、详细流程1、数据预处理(数据清洗)(1)数据导入使用panda库读取数据,编码方式
- Python 数据分析实践经验与学习心得
lzzy_sj_0999
python数据分析开发语言
在当今数据驱动的时代,Python以其丰富的库和便捷的语法,成为数据分析领域的首选语言。本文将结合实际案例,分享Python数据分析的学习心得与实践经验,涵盖数据读取、清洗、分析及可视化等关键环节,希望能为大家的学习和工作提供帮助。一、数据分析必备库介绍在Python数据分析中,有几个核心库是必须掌握的,它们就像我们手中的“神兵利器”,能够高效完成各种数据分析任务。Pandas:用于数据处理和分析
- 《Python数据分析与挖掘实战》Chapter8中医证型关联规则挖掘笔记
茫茫大地真干净
机器学习Python数据挖掘
最近在学习《Python数据分析与挖掘实战》中的案例,写写自己的心得。代码分为两大部分:1.读取数据并进行聚类分析2.应用Apriori关联规则挖掘规律1.聚类部分函数分析:defprogrammer_1():datafile="C:/Users/longming/Desktop/chapter8/data/data.xls"processedfile="C:/Users/longming/Des
- python数据分析张俊红_Python数据分析实战基础 | 初识Pandas
weixin_39678531
python数据分析张俊红
这是Python数据分析实战基础的第一篇内容,主要是和Pandas来个简单的邂逅。已经熟练掌握Pandas的同学,可以加快手速滑动浏览或者直接略过本文。01重要的前言这段时间和一些做数据分析的同学闲聊,我发现数据分析技能入门阶段存在一个普遍性的问题,很多凭着兴趣入坑的同学,都能够很快熟悉Python基础语法,然后不约而同的一头扎进《利用Python进行数据分析》这本经典之中,硬着头皮啃完之后,好像
- python数据分析第9天
雪球滚滚滚
数据分析python数据挖掘
python数据分析第9天电商网站用户/订单/活动数据分析项目商业模式B2B:商家对商家(企业卖家对企业买家),交易双方都是企业,最典型的案例就是阿里巴巴,汇聚了各行业的供应商,特点是订单量一般较大。B2C:商家对个人(企业卖家对个人买家),例如:唯品会,聚美优品。B2B2C:商家对商家对个人,例如:天猫、京东。C2C:个人(卖家)对个人(买家),例如:淘宝、人人车。O2O:线上(售卖)到线下(提
- Python数据处理三剑客:NumPy、Pandas和xarray全面详解
AI开发学习分享
python数据分析pythonnumpypandas
在Python数据分析领域,NumPy、Pandas和xarray是最核心的三个库。本文将详细介绍它们的功能、用法和区别,并提供大量实用代码示例。一、NumPy:科学计算基础库NumPy是Python科学计算的基础包,提供了高性能的多维数组对象和各种计算工具。1.1基本数组操作importnumpyasnp#创建数组arr1=np.array([1,2,3,4])#一维数组arr2=np.arra
- 100个Pandas练习题:从入门到精通的实战指南
陆骊咪Durwin
100个Pandas练习题:从入门到精通的实战指南100-pandas-puzzles100datapuzzlesforpandas,rangingfromshortandsimpletosupertricky(60%complete)项目地址:https://gitcode.com/gh_mirrors/10/100-pandas-puzzles前言Pandas作为Python数据分析的核心库,
- Python 数据分析与可视化实践与python数据分析绘图表的实现,和实际的完整案例
Q_ytsup5681
python数据分析开发语言plotlymatplotlib
本文链接:Python数据分析与可视化实践与python数据分析绘图表的实现,和实际的完整案例-CSDN博客学习Python数据可视化对于数据分析和数据科学领域是至关重要的,它有着许多作用,包括但不限于以下几个方面:1.数据理解与探索:可视化使得数据更加直观,通过图表和图形,可以更容易地观察数据的分布、趋势和模式。这有助于深入理解数据,识别异常值和发现潜在的关联性。2.决策支持:数据可视化为决策提
- python数据分析 期末测验,python数据分析基础题库
Leospanb87
python开发语言人工智能
大家好,小编来为大家解答以下问题,python数据分析与应用选择题答案,python数据分析与应用课后题,现在让我们一起来看看吧!文章目录一、选择题二、填空题三、判断题四、代码分析题五、程序题一、选择题1.sum(range(0,101)的结果是()A.5050B.5151C.0D.101A2.下面哪个不是python合法的标识符()A.int32B.70XLC.selfD.__name__B3.
- python数据分析与可视化
蓝宗林
python数据分析信息可视化
一、Python数据分析概述Python是一种解释型、交互式的编程语言,其设计理念强调代码的可读性和简洁性。Python的语法结构简单,支持面向对象、过程式和函数式三种编程范式,使得Python成为一种强大而灵活的编程语言。Python数据分析主要包括数据清洗、数据探索和数据可视化三个部分。数据清洗是数据分析的重要环节,主要是对数据进行预处理,包括缺失值处理、异常值处理、数据类型转换等。数据探索则
- Python数据分析与可视化理论知识
Python数据分析概述Python数据分析依赖的两个对象表格对象实现统计分析数据预处理Matplotlib数据可视化总结Python数据分析概述数据分析的概述数据分析:用适当的统计分析方法将收集来的大量数据进行分析,将他们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。数据分析的类别:描述性数据分析、探索性数据分析
- 3648766
天浊海
pythonpycharmsklearn
1.Python数据分析介绍及环境搭建1.1python数据分析简介【了解】1.1.1python做数据分析的优势可以独立完成数据分析的各种任务功能强大,有海量的开源包(pandas,numpy…)处理海量数据效率高开源免费1.1.2常用python数据分析开源库numpy:用于数组计算pandas:分析结构化数据的工具集series:类似一维数组的对象(一行数据或者一列数据)dataframe:
- Python数据分析的基本步骤
在焦虑的沙漠里种一棵树
python数据分析开发语言
数据分析的基本步骤(基于Python)一、引言在当今数字化时代,数据已成为企业、科研机构等组织的重要资产。有效地进行数据分析可以帮助我们从海量的数据中提取有价值的信息,从而支持决策制定、优化流程、发现趋势等。Python作为一种强大的编程语言,拥有丰富的数据分析库,如Pandas、NumPy、Matplotlib等,为数据分析工作提供了极大的便利。本文将详细阐述基于Python的数据分析基本步骤,
- Python数据分析从小白到高手--数据可视化分析
王国平
信息可视化python数据分析人工智能大数据数据挖掘开发语言
Python是一种功能强大的编程语言,也是一种流行的数据分析工具,其数据可视化能力也非常强大,本章我们将结合实际案例介绍Python的主要数据可视化库,包括Matplotlib、Pyecharts、Seaborn、Plotly、Altair、NetworkX等。7.1Matplotlib7.1.1Matplotlib库简介Matplotlib是Python中最流行的数据可视化库之一,基于Numpy
- 【无痛学Python】Pandas数据载入与预处理,看这一篇就够了!
Skrrapper
Pythonpythonpandas数据库
【Python数据分析】Pandas数据载入与预处理,看这一篇就够了!对于数据分析而言,数据大部分来源于外部数据,例如CSV文件、Excel文件以及数据库文件等等。我们要把各种格式的数据转换成Pandas可处理的Series和DataFrame数据格式,进行完数据分析与处理之后再重新存储到外部文件中,这就是Pandas的数据载入与预处理。数据载入其实对于读/写文件和存储文件来说,不同类型文件的函数
- Python 数据分析:NumPy 库的使用
小张在编程
python数据分析numpy
引言:为什么说NumPy是Python数据分析的“基石”?在Python数据分析领域,有这样一句话:“没有NumPy,就没有Pandas、Matplotlib和Scikit-learn”。作为Python科学计算的核心库,NumPy(NumericalPython)凭借高效的多维数组(ndarray)和向量化运算能力,成为了所有数据分析工具的底层支撑。无论是处理百万级别的销售数据,还是实现复杂的机
- python数据分析期末_Python数据分析期末作业
xander Sun
python数据分析期末
Python数据分析期末作业(50分)一、名称:国民经济核算季度数据分析可视化处理;二、需求:根据文件《国民经济核算季度数据.npz》提供的各年中每个季度的数据,完成如下操作处理:1、绘制直方图:(1)在一个画板中绘制2000年、2017年第一季度国民生产总值产业构成分布、行业构成分布直方图,其效果形式如下;(2)要求:?每个图形的标题、轴标签、刻度、图形颜色、柱形宽度与效果图中的完全一致;?在每
- 1、Python数据分析:数据的采集
数字化与智能化
Python数据分析python数据分析python数据的采集
一、数据的采集数据采集是系统性工程,需平衡技术、成本与合规性。在实际操作中,建议从最小可行采集方案(MVP)起步,逐步迭代优化,同时建立数据治理规范,确保长期可持续性。1.数据采集的核心目标全面性:覆盖关键维度,避免信息缺失。准确性:确保数据真实反映现实,减少误差。时效性:数据需满足实时或近实时需求(如金融交易监控)。合规性:遵守隐私保护(如GDPR)、数据安全等法律法规。2.数据来源分类(1)第
- 如何进行Python数据分析?正确的“入门之路”三部曲
白帽黑客麦叔
Pythonpython数据分析开发语言职场和发展Python教程
前言Python是一种面向对象、直译式计算机程序设计语言,由于他简单、易学、免费开源、可移植性、可扩展性等特点,Python又被称之为胶水语言。下图为主要程序语言近年来的流行趋势,Python受欢迎程度扶摇直上。由于Python拥有非常丰富的库,使其在数据分析领域也有广泛的应用。一、为什么要用Python做数据分析?在我看来,大概有3大理由。广度:各行各业都有自己的商业场景,每一个行业都需要使用数
- 如何进行Python数据分析?正确的“入门之路”三部曲!_python医学数据分析入门
2401_84301948
程序员网络安全学习面试
给大家的福利零基础入门对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。同时每个成长路线对应的板块都有配套的视频提供:因篇幅有限,仅展示部分资料网络安全面试题绿盟护网行动还有大家最喜欢的黑客技术网络安全源码合集+工具包所有资料共282G,朋友们如果有需要全套《网络安全入门+黑客进阶学习资源包》,可以扫描下方二维码
- 【数据分析】第四章 pandas简介(1)
神秘敲码人
数据分析pythonpandas
4.1pandas:Python数据分析库pandas是一个专门为数据分析量身定制的开源Python库。在当今的Python数据科学界,无论是专业研究还是进行统计分析和决策,pandas都是每一位数据专业人士不可或缺的基础工具。这个强大的库由WesMcKinney于2008年开始设计和开发。到了2012年,他的同事SienChang也加入了开发团队。正是他们二人的共同努力,造就了Python社区中
- 一篇文章搞定Python数据分析用到的所有库
花小姐的春天
跟着花姐学Pythonpython数据分析开发语言0基础学PythonPython教程Python基础教程数据挖掘
想做数据分析,却不知道从哪里入手?别担心,花姐今天就来告诉你,想搞定数据分析,掌握以下这些Python库就够了!准备好了吗?跟着我一起看看这些实用的库吧!1.数据处理库在数据分析的世界里,数据处理是最基础也是最重要的部分。如果你想要做一份高质量的报告,或者让数据“乖乖”地为你服务,首先必须得把数据弄清楚、整理好。今天,我们就从四个强大的数据处理库说起——pandas、numpy、dask和modi
- Python编码系列—Python数据分析:NumPy与Pandas的实战应用
学步_技术
Python编码python数据分析numpy
欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。探索专栏:学步_技术的首页——持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。技术导航:人工智能:深入探讨人工智能领域核心技术。自动驾驶:分享自动
- Python, 数据分析, 电商运营, 用户行为
detayun
Pythonpython数据分析开发语言
在电商行业日益内卷的今天,如何通过用户行为数据挖掘商业价值已成为企业制胜的关键。本文将结合Python数据分析工具链,从实战角度解读电商用户行为分析的全流程,并提供可直接复用的代码框架。一、为什么需要用户行为分析?电商用户行为数据是隐藏的"商业密码本",通过分析可实现:精准营销:识别高价值用户群体(如"双11"前浏览未购买用户)体验优化:发现购物车弃置率高的环节(如支付流程卡点)库存优化:基于销量
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri