- AI 大模型应用数据中心建设:高性能计算与存储架构
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
AI大模型、数据中心、高性能计算、存储架构、分布式训练、GPU加速、数据管理1.背景介绍近年来,人工智能(AI)技术取得了飞速发展,特别是深度学习模型的突破性进展,催生了一系列基于大规模数据训练的强大AI模型,例如GPT-3、BERT、DALL-E等。这些AI大模型在自然语言处理、计算机视觉、语音识别等领域展现出强大的应用潜力,但也对计算资源和数据存储提出了极高的要求。传统的计算架构难以满足AI大
- 一个简单的语音识别实现---百度在线语音识别REST API SDK(Python)简单使用
DerrickOzil
语音识别pythonsdk语音识别
百度在线语音识别RESTAPISDK(Python)简单使用首先申请开发者权限注册开发者信息完成注册创建新应用下载SDK并查看key在应用管理中,选择查看key,记录AppID、APIKey、SecretKey三个参数值。测试音频链接:http://pan.baidu.com/s/1o8Ue4B4密码:o5r1]注意事项音频格式限制pcm(不压缩)、wav、amr采样频率及位数支持评测8k/16k
- AI大模型从入门到精通,2025终极指南!好卷啊,又不能躺平,只能悄悄卷你们了!
大模型教程
人工智能大模型训练LLM知识库大模型大模型入门大模型学习
什么是AI大模型?AI大模型是指使用大规模数据和强大的计算能力训练出来的人工智能模型。这些模型通常具有高度的准确性和泛化能力,可以应用于各种领域,如自然语言处理、图像识别、语音识别等。为什么要学AI大模型?2024人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用,大模型作为其中的重要组成部分,正逐渐成为推动人工智能发展的重要引擎。大模型以其强大的数据处理和模式识别能力,广泛应用于
- IP证书如何让企业提升网络信任度
ssl证书ip地址
IP证书,作为一种专门设计用于保护IP地址安全的数字证书,正逐渐成为提升企业网络信任度的关键工具。###IP证书申请入口申请时记得填写注册码230931,获取一对一技术支持一、身份验证与加密通信IP证书的核心在于通过PKI技术实现设备身份与IP地址的强绑定。当企业为服务器或设备部署IP证书后,通信双方通过交换证书验证身份,并协商对称密钥加密数据,确保通信的机密性与完整性。这一机制有效抵御了IP欺骗
- Google Gemini 大模型技术架构剖析
musicml
人工智能
▼最近直播超级多,预约保你有收获近期直播:《从原理到实践教你做出一个Gemini/ChatGPT》—1—Gemini技术架构剖析Google新的多模态模型家族Gemini,它在文本、图像、音频、视频等方面具有卓越的能力。Gemini系列包括Ultra、Pro和Nano三种尺寸,适用于从复杂的推理任务到设备内存受限的应用场景。GeminiUltra是最强大的模型,可在各种高度复杂的任务(包括推理和多
- FireRedASR:精准识别普通话、方言和歌曲歌词!小红书开源工业级自动语音识别模型
蚝油菜花
每日AI项目与应用实例语音识别人工智能人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!微信公众号|搜一搜:蚝油菜花大家好,我是蚝油菜花,今天跟大家分享一下FireRedASR这个小红书开源的工业级自动语音识别模型。快速阅读FireRedASR是小红书开源的工业级自动语音识别模型,支持普通话、中文方言和英语。该模型在普通话ASR基准测试
- 语音识别后处理代码
hitsz_syl
语音识别后处理
importreimportdifflibimportosfromdatetimeimportdatetime,timedeltadefextract_snippets_no_duplicates(input_file,output_file,window=150):"""从输入文本文件中提取包含目标字符(A、B、C、D、"开始"、"结束")前后`window`个字符范围的文本。提取时扩展到完整的
- 一周热点:微软攻克语音输入、文本输出难题-Phi-4-multimodal
数据分析能量站
机器学习人工智能
微软Phi-4-multimodal模型是人工智能领域的一个重要进展,它标志着微软在多模态人工智能技术上的突破。以下是对该模型的详细解释:模型概述微软Phi-4-multimodal是一个能够同时处理文本、图像和语音的多模态大型语言模型。它通过创新的架构和训练方法,实现了在不同模态之间的无缝交互,为用户提供更自然、更智能的交互体验。模型架构该模型采用多模态Transformer架构,通过LoRA(
- 豆包AI的详细介绍
古龙飞扬
人工智能
一、平台访问与登录网页版:在浏览器中输入豆包官网地址,登录账号后,点击首页导航栏中的“AI作画”或相关图片生成入口,即可进入图片生成页面。APP版:在安卓应用市场或iOS的AppStore中搜索“豆包”,下载安装后打开并登录,在首页或功能区找到“AI作画”等类似入口,点击进入图片生成界面。二、主要功能及示例智能对话功能描述:豆包AI能够理解和解析自然语言,用户可以通过语音或者文字的方式输入问题,它
- 3月16日星期日早报简报微语报早读
微语早读
生活
3月16日星期日,农历二月十七,早报#微语早读。1、多地探索将DeepSeek嵌入纪检监察工作,有的已甄别出可疑数据;2、再次超越!《哪吒2》票房进入全球票房榜前5名;3、北京修订小客车数量调控细则:增加亲属间车辆转让范围;4、市场监管总局:全面加大包括直播带货在内的网售产品抽查力度;5、西安交通大学通报“副教授权威期刊论文全文抄袭”:解除聘用关系;6、涉多个知名品牌!卫生巾、纸尿裤残次料,竟被翻
- 热门AI创作助手推荐【第一期】
量子星澜
文心一言AI写作chatgpt
星游AI创作助手人工智能在现代科技中的应用非常广泛,涵盖了诸多领域,包括但不限于以下几个方面:1.语音识别和自然语言处理:人工智能技术被广泛应用于语音识别和自然语言处理领域,例如智能助手、翻译系统、语音交互系统等。2.机器学习和数据分析:人工智能的机器学习算法被用于数据分析、预测建模、用户个性化推荐等领域,帮助企业做出更准确的商业决策。3.计算机视觉:人工智能在计算机视觉领域的应用包括图像识别、视
- Twilio发送短信
五彩的颜色
javaspringbootspringcloudjenkinsk8sdocker
简介Twilio为将来的商业沟通提供强大支持,并使开发人员能够将语音、VoIP和消息传送嵌入到应用程序中。它们对基于云的全球环境中所需的所有基础结构进行虚拟化,并通过Twilio通信API平台将其公开。可轻松构建和扩展应用程序。享受现用现付定价所带来的灵活性,并从云可靠性中受益。利用Twilio语音,应用程序可以发起和接收电话呼叫。TwilioSMS使应用程序能够发送和接收文本消息。利用Twili
- Android 百度语音合成工具类封装:内存泄漏防护与简化调用
tangweiguo03051987
androidandroid
适配高版本Android系统使用ApplicationContext避免内存泄漏默认回调支持,调用更简洁线程安全与资源释放优化完整代码:BaiduTTSManager.java:importandroid.content.Context;importandroid.os.Handler;importandroid.os.Looper;importandroid.util.Log;importand
- AI笔记——语音识别
Yuki-^_^
人工智能AI人工智能笔记语音识别
摘要:语音识别(AutomaticSpeechRecognition,ASR)是人工智能领域的一项重要技术,它将人类的语音信号转换成文字。随着科技的发展,语音识别已经成为现代生活和工作中不可或缺的一部分。本文旨在介绍语音识别的基本原理、关键技术、应用场景以及未来发展趋势。一、历史与发展语音识别技术的历史可以追溯到20世纪50年代,那时的技术基于规则和模板。随着计算能力的提升和深度学习方法的出现,语
- 自动语音识别(ASR)模型全览
u013250861
#语音识别人工智能
以下为截至2024年底主流ASR模型的详细列表,涵盖传统模型、端到端模型、开源框架及商业解决方案,按技术类型分类整理,并标注适用场景:一、传统混合模型(GMM/HMM、DNN/HMM)GMM/HMM公开时间:1980年代参数量:百万级(依赖状态数)特点:基于高斯混合模型(GMM)与隐马尔可夫模型(HMM)结合,需手工对齐音素状态。适用场景:早期电话语音识别(嵌入式设备)、孤立词识别(工业控制终端)
- Spring Data JPA自定义Id生成策略、复合主键配置、Auditing使用
JingAi_jia917
JPASpringDataJPA自定义ID生成策略复合主键AuditAuditing
SpringDataJPA系列1、SpringBoot集成JPA及基本使用2、SpringDataJPACriteria查询、部分字段查询3、SpringDataJPA数据批量插入、批量更新真的用对了吗4、SpringDataJPA的一对一、LazyInitializationException异常、一对多、多对多操作5、SpringDataJPA自定义Id生成策略、复合主键配置、Auditing
- 记一次联想ThinkBook 16P G5 IRX ,麦克风无声音问题的解决
花花鱼
Windowswindows音频
1、微信语音麦克风无声音在电脑上微信电话,麦克风的功能没有,或者说你要录个屏给客户,发现讲不了话,也是比较的麻烦。2、联系客服建议升级声卡驱动,然后更新了以后,一个样没什么区别。各种设置,发现还是不行。3、声音设置当然,图片上的是静音麦克风了,按一下键就可以去掉。4、专家给了工具解决旧版驱动残留文件清除工具.zip链接:https://pan.baidu.com/s/1eVjT_QjYk_vz10
- Assembly语言的自然语言处理
花韵婷
包罗万象golang开发语言后端
Assembly语言在自然语言处理中的应用引言自然语言处理(NaturalLanguageProcessing,NLP)作为人工智能的一个重要分支,致力于实现计算机与人类语言之间的互动。随着计算能力的提升以及大数据的蓬勃发展,NLP在各个领域的应用如火如荼。从语音识别、机器翻译到情感分析等,NLP正在改变我们与信息之间的互动方式。不过,当前主流的NLP研究通常是用高级编程语言(如Python、Ja
- PCDN边缘计算小白入门指南
神鸟云-Hu
边缘计算人工智能
一、PCDN边缘计算简介PCDN是一种基于P2P技术的边缘计算内容分发网络。它通过挖掘和利用边缘网络中的海量碎片化闲置资源,构建出低成本、高品质的内容分发网络服务。通过集成PCDNSDK(软件开发工具包),可以获得与CDN(ContentDeliveryNetwork,内容分发网络)相当或略高的分发质量,同时显著降低分发成本。PCDN适用于视频点播、直播、大文件下载等业务场景,旨在降低客户的分发成
- 【MyBatis笔记06】MyBatis中的三种关联查询方式(一对一、一对多、多对多)
Mr.小朱同学
SSM专栏笔记mybatis关联查询一对一一对多多对多
这篇文章,主要介绍MyBatis中的三种关联查询方式(一对一、一对多、多对多)。目录一、MyBatis关联查询1.1、准备环境(1)SQL建表语句(2)创建实体类1.2、一对一查询(1)创建Mapper接口方法(2)创建XML映射文件(3)测试程序1.2、一对多关联查询(1)实体类(2)创建XML映射文件(3)测试程序1.3、多对多关联查询一、MyBatis关联查询MyBatis框架支持三种关联查
- 数据结构-顺序栈详解(超基础的那种)
FifthDesign
指针数据结构c++栈编程语言
顺序栈的设计及运行1.顺序栈栈是在顺序表和链表的基础上学习的另一种存储形式,是只能在表的一端(栈顶)进行插入和删除的线性表,也就是遵循先进后出的原则,它与线性表一样,仍然是一对一的关系,根据存储关系不同,可以分为顺序栈和链栈,这里我来演示一下顺序栈的C语言操作。还是那句话,没有什么是操作一遍解决不了的,如果还有的话,那就再来一遍,嗯,请叫这句话为lanyan理论,哈哈嗝。2.代码部分主函数(主函数
- NPU的应用场景:从云端到边缘
绿算技术
NPU架构介绍缓存人工智能科技深度学习
NPU的应用场景非常广泛,主要包括以下几个方面:1.云计算与数据中心AI推理服务:在云端提供高效的AI推理服务,例如图像识别、语音识别。模型训练加速:在大规模训练任务中,NPU可以作为加速单元,提升训练效率。2.边缘计算智能摄像头:在安防监控中,NPU可以实时处理视频流,实现目标检测和跟踪。智能音箱:在语音助手中,NPU可以加速语音识别和自然语言处理任务。3.自动驾驶实时感知:NPU可以加速自动驾
- NPU的工作原理:神经网络计算的流水线
绿算技术
NPU架构介绍神经网络人工智能深度学习
NPU的工作原理可以概括为以下几个步骤:1.模型加载·将训练好的神经网络模型加载到NPU的内存中。2.数据输入·输入数据(如图像、语音)通过接口传输到NPU。3.计算执行·NPU根据模型结构,依次执行卷积、池化、全连接等计算任务。·矩阵乘法单元和卷积加速器并行工作,高效完成计算。4.结果输出·计算完成后,输出结果(如分类标签、检测框)返回给主机或其他处理器。5.任务调度·在多任务场景下,NPU的任
- 第一章 数据结构绪论
超神的你
数据结构与算法笔记数据结构与算法
第一章数据结构绪论数据数据对象:性质相同的数据元素的集合,数据的子集数据元素:人数据项:眼、耳、鼻、嘴、手、脚等不可分割的项数据结构:存在特定关系(搭配和排列)的数据元素的集合逻辑结构集合结构:元素之间没有关系线性结构:元素之间一对一关系(兄弟排行)树形结构:元素之间一对多关系(父子)图形结构:元素之间多对多关系(好朋友)物理结构/存储结构:逻辑结构的存储形式顺序存储(数组)链式存储(取号):需要
- 谷歌Gemini 3大模型发布,AI领域再掀波澜!
广拓科技
人工智能
在人工智能的浩瀚宇宙中,每一次重大突破都如同一颗璀璨的新星,照亮我们对未来的想象。而近期,谷歌发布的Gemini3大模型,无疑是其中最为耀眼的存在,它在AI领域激起的波澜,迅速蔓延至全球科技圈,引发了广泛关注与热烈讨论。随着AI技术的迅猛发展,我们已经见证了众多令人惊叹的创新成果。从智能语音助手到图像识别技术,从自动驾驶汽车到医疗诊断辅助系统,AI正以前所未有的速度改变着我们的生活和工作方式。在这
- 跟着黑马学MySQL基础篇笔记(4)-多表查询
小杜不吃糖
mysql笔记
37.多表查询-多表关系介绍多表关系概述项目开发中,在进行数据库表结构设计时,会根据业务需求及业务模块之间的关系,分析并设计表结构,由于业务之间相互关联,所以各个表结构之间也存在着各种联系,基本上分为三种:一对多(多对一)多对多一对一一对多(多对一)案例:部门与员工的关系关系:一个部门对应多个员工,一个员工对应一个部门实现:在多的一方建立外键,指向一的一方的主键多对多案例:学生与课程的关系一个学生
- 小狐狸AI数字人源码独立SAAS部署全开源+搭建环境教程
kaui52066
kaui52066精品源码人工智能uni-app前端小程序php小狐狸AI数字人数字人源码
一.系统介绍小狐狸AI数字人分身系统源码独立部署支持PC端、小程序端、H5端,一键克隆真人形象+声音核心功能亮点:1:1真人级克隆技术声音克隆:上传3分钟音频,AI深度学习声纹特征,复刻语气、情感、方言形象克隆:通过照片/视频建模,生成动态3D数字人,表情自然,动作流畅智能口型同步引擎AI算法精准匹配唇形与语音,实现口型同步0门槛SAAS化操作无需专业设备,网页端一键生成数字人视频海量模板库:电商
- uniapp vue3项目用原生h5 audioContext实现语音文件倍速播放,可适应h5和安卓app
努力做大神
uni-appandroid音频倍速播放
前言uniapp项目要做类似微信的聊天语音播放功能,可以切换语音,可以点击切换播放/停止播放状态,还可以倍速播放。开始用了uniapp的音频组件uni.createInnerAudioContext(),很好用但就是倍速播放playbackRate属性不起作用,经过研究,决定用原生h5的audioContext。AudioContext是WebAudioAPI的一部分,它代表了一个音频处理图,允许
- 短视频时代,普通人如何保护个人隐私?——从SSL证书看数据安全
安全
在短视频时代,每天数以亿计的用户上传内容、互动评论、甚至进行直播购物。然而,这些行为背后潜藏着隐私泄露的风险:账号密码被盗、支付信息被窃取、个人数据遭篡改……如何在这些场景中保护隐私?SSL证书作为互联网安全的基石,正扮演着关键角色。本文将从技术原理到实践建议,为你揭开SSL证书如何成为隐私保护的“隐形盾牌”。一、SSL证书:隐私保护的第一道防线SSL(SecureSocketsLayer)证书是
- 吴恩达机器学习笔记复盘(二)监督学习和无监督学习
wgc2k
机器学习机器学习笔记学习
监督学习经济价值以及定义监督学习是机器学习中创造了99%经济价值的类型,它是学习输入到输出映射的算法,关键在于给学习算法提供包含正确答案(即给定输入X的正确标签Y)的学习例子。生活中的例子邮件分类,输入是电子邮件,输出是判断邮件是否为垃圾邮件。语音识别,输入音频剪辑,输出文本记录。机器翻译,输入一种语言文本,输出其他语言的相应翻译。在线广告,输入广告和用户信息,预测用户是否点击广告,为公司带来大量
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理