首先,我们要下载Letter Recognition数据。 Letter Recognition 是字符识别任务,有20000个数据,每个数据17维,其中有一维是给定标签(26个英文字母)。
我们首先下载Letter Recognition 数据集,见
http://archive.ics.uci.edu/ml/machine-learning-databases/letter-recognition/
点击data 下载。
其次,我们要用python 加载数据,我们用pandas的read_csv来加载
import torch
from torch import nn as nn
from torch.nn import functional as F
from torch import optim
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import time
torch.set_default_tensor_type(torch.DoubleTensor)
'''load letter-recognition dataset'''
dataset = pd.read_csv('letter-recognition.data')
data = np.array(dataset.T)
之后将数据集划分为训练集和测试集,并且将标签转化为数字,即A,B,C之类的转化为0到25
X_train = data[1:, :16000].T # [16000, 16]
X_train_label = data[0:1, :16000].T # [16000, 1]
for i in range(len(X_train_label)):
X_train_label[i, :] = float(ord(str(X_train_label[i, :])[2]) - ord('A'))
X_train = torch.from_numpy(X_train.astype(float))
X_train_label = torch.from_numpy(X_train_label.astype(float))
X_test = data[1:, 16000:].T # [3999, 16]
X_test_label = data[0:1, 16000:].T # [3999, 1]
for i in range(len(X_test_label)):
X_test_label[i, :] = float(ord(str(X_test_label[i, :])[2]) - ord('A'))
X_test = torch.from_numpy(X_test.astype(float))
X_test_label = torch.from_numpy(X_test_label.astype(float))
train_data = Data.TensorDataset(X_train, X_train_label)
test_data = Data.TensorDataset(X_test, X_test_label)
我们希望用到Batch size, 也就是说每次只用数据的一小部分进行训练,所以我们要对数据集处理。我们用torch来处理:
batch_size = 500
train_loader = Data.DataLoader(
dataset=train_data, # 数据,封装进Data.TensorDataset()类的数据
batch_size=batch_size, # 每块的大小
shuffle=True # 要不要打乱数据 (打乱比较好)
)
test_loader = Data.DataLoader(
dataset=test_data,
batch_size=1,
shuffle=True
)
由于我们想画出损失函数的变化曲线,故我们定义一个画图函数
def plot_curve(data):
fig = plt.figure()
plt.plot(range(len(data)), data, color='blue')
plt.legend(['value'], loc='upper right')
plt.xlabel('step')
plt.ylabel('value')
plt.title('train loss')
plt.show()
我们要将标签转化为one-hot 编码,
故我们定义函数
def one_hot(label, depth=26):
out = torch.zeros(label.size(0), depth)
for k in range(label.size(0)):
out[k, int(label[k, :])] = 1
return out
定义神经网络结构
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(16, 256)
self.fc2 = nn.Linear(256, 128)
self.fc3 = nn.Linear(128, 64)
self.fc4 = nn.Linear(64, 26)
def forward(self, t):
x1 = F.relu(self.fc1(t))
x2 = F.relu(self.fc2(x1))
x3 = F.relu(self.fc3(x2))
x4 = self.fc4(x3)
return x4
训练过程:
net = Net()
optimizer = optim.Adam(net.parameters(), lr=0.001)
train_loss = []
for epoch in range(200):
for batch_idx, (x, y) in enumerate(train_loader):
# x: [b, 1, 28, 28], y:[512]
# [b, 1, 28, 28] => [b, feature]
# =>[b,10]
out = net(x)
y_onehot = one_hot(y)
# loss = MSE(out, y_onehot)
loss = F.mse_loss(out, y_onehot)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss.append(loss.item())
if batch_idx % 10 == 0:
print(epoch, batch_idx, loss.item())
plot_curve(train_loss)
测试过程
total_correct = 0
for x, y in test_loader:
out = net(x)
pred = out.argmax(dim=1)
correct = pred.eq(y).sum().float().item()
total_correct += correct
total_num = len(test_loader.dataset)
acc = total_correct / total_num
print('test acc:', acc)