- 基于社交网络算法优化的二维最大熵图像分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法php开发语言
智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码文章目录智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码1.前言2.二维最大熵阈值分割原理3.基于社交网络优化的多阈值分割4.算法结果:5.参考文献:6.Matlab代码摘要:本文介绍基于最大熵的图像分割,并且应用社交网络算法进行阈值寻优。1.前言阅读此文章前,请阅读《图像分割:直方图区域划分及信息统计介绍》htt
- python编写直方图和饼图
2301_80421078
python开发语言
1.直方图#直方图的绘制#语法格式:plt.hist(x,bins),其中x:数据集;bins:统计数据的分布区间importmatplotlib.pyplotaspltimportpandasaspd#导入文件excel=pd.read_excel('成绩.xlsx')#print(excel)#避免乱码plt.rcParams['font.sans-serif']=['SimHei']x=ex
- python图像匹配_opencvpython中的图像匹配
weixin_39585675
python图像匹配
我一直在做一个项目,用opencvpython识别相机中显示的标志。我已经尝试过使用surf、颜色直方图匹配和模板匹配。但在这3个问题中,它并不总是返回正确的答案。我现在想要的是,解决我这个问题的最好办法是什么。模板图像示例:以下是摄像头中显示的标志示例。如果这是我想要识别的图像,该怎么用?在更新matchTemplate中的代码flags=["Cambodia.jpg","Laos.jpg","
- 直方图匹配(Histogram Matching)
姜太公钓鲸233
计算机视觉人工智能机器学习
直方图匹配(HistogramMatching),也被称为直方图规定化(HistogramSpecification)或直方图修正(HistogramEqualization),是一种图像处理技术,用于调整图像的直方图,以使其与某个目标直方图相匹配。目标直方图通常是用户定义的或者是希望获得的期望分布。直方图匹配的目标是改变图像的像素值分布,从而使其在视觉上更接近目标直方图。这对于图像增强、风格迁移
- MATLAB数据建模Week10
WinterCruel
matlab算法人工智能
MATLAB数据建模Week10拿走不谢1、某校60名学生的一次考试成绩如下:937583939185848277767795948991888683968179977875676968848381756685709484838280787473767086769089716686738094797877635355(1)计算均值、标准差、极差、偏度、峰度,画出直方图;(2)检验分布的正态性;(3
- python常用库学习-Matplotlib使用
问道飞鱼
Python相关内容python学习matplotlib
文章目录安装Matplotlib导入库基本示例1.绘制简单的线图2.散点图3.柱状图4.直方图5.子图更多高级功能1.自定义样式2.文本和注释3.保存图形示例:使用Matplotlib绘制多个图表示例1:绘制多个线图示例2:绘制散点图和直方图参考文献Matplotlib是Python中一个非常流行的绘图库,它提供了大量的图形绘制功能,可以创建各种静态、动态和交互式的图表。下面是一些使用Matplo
- 单调队列与单调栈(集训day2)
Saber—Lily
集训算法
一、目录1、单调队列2、单调栈二、正文1.单调栈题型:(1)给出一个数组找出其中每个数左边第一个比它小(大)的数字830.单调栈-AcWing题库(2)求直方图中最大的矩形(找出每个数左边和右边第一个比它小的数字)131.直方图中最大的矩形-AcWing题库(3)求部分点被破坏的直方图中最大的矩形((2)的变形)1413.矩形牛棚-AcWing题库A-玉蟾宫_hunau暑假集训2——单调栈与单调队
- python图像对比度增强_Python 图像对比度增强的几种方法(小结)
weixin_39956451
python图像对比度增强
图像处理工具——灰度直方图灰度直方图时图像灰度级的函数,用来描述每个灰度级在图像矩阵中的像素个数或者占有率。例子:矩阵图片来自网络,侵删!上面图片的灰度直方图python实现#!usr/bin/envpython#-*-coding:utf-8_*-"""@author:Suiyue@describe:灰度直方图,描述每个灰度级在图像矩阵中的像素个数或者占有率@time:2019/09/15"""
- 图像预处理之图像去重
江小皮不皮
计算机视觉opencv人工智能图像去重直方图
图像预处理之图像去重图像去重介绍方法基于直方图进行图像比对基于哈希法基于ORG进行图像特征提取基于机器学习批量去重图像去重介绍图像去重通常指的是完全相同的图像,即内容完全相同,颜色、尺寸、方向等都相同。但是在实际应用中,也有相似图像去重的需求,即内容大致相同,颜色、尺寸、方向等可能有所不同。因此,图像去重指的可以是完全一样的图像,也可以是相似的图像。图像去重的方法有以下几种:方法哈希法:通过计算图
- openCV【实践系列】2——OpenCV方向梯度直方图
一只长尾巴
什么是特征描述符特征描述符是图像或图像块的表示,其通过提取有用信息和丢弃无关信息来简化图像。通常,特征描述符将一个width*height*3(通道)的图像转换为长度为n的特征向量或数组。在HOG特征描述符的情况下,输入图像的大小为64×128×3,输出特征向量的长度为3780。在HOG特征描述符中,梯度方向(定向梯度)的分布(直方图)被用作特征。图像的梯度(x和y导数)是有用的,因为在边缘和角落
- 【ElasticSearch-聚合查询】ES聚合统计及springboot对比实现
皮卡皮卡皮·
ElasticSearchelasticsearchspringbootjenkins
文章目录ElasticSearch聚合操作一、数据准备1.IndexMapping2.IndexData二、BucketAggregation1.Terms(词项聚合)2.Range(范围聚合)3.Histogram(直方图聚合)三、MetricsAggregations1.Avg、Sum、Min、MaxAggregation2.StatsAggregation(统计聚合)3.ExtendedSt
- C#调用OpenCvSharp实现图像的直方图均衡化
gc_2299
dotnet编程OpenCvSharp直方图均衡化
本文学习基于OpenCvSharp的直方图均衡化处理方式,并使用SkiaSharp绘制相关图形。直方图均衡化是一种图像处理方法,针对偏亮或偏暗的图像,通过调整图像的像素值来增强图像对比度,详细原理及介绍见参考文献1-4。 直方图均衡化第一步要将彩色图像转换为灰度图像,调用OpenCvSharp中的Cv2.CvtColor函数转换,主要代码及效果图如下所示:MatoriImage=Cv2.Im
- halcon画出灰度直方图_halcon读取一张照片,并转化为灰度图像
Wakune
halcon画出灰度直方图
dev_close_window()read_image(Image,'E:/图片/123.jpg')get_image_size(Image,Width,Height)dev_open_window(,,Width,Height,'black',WindowHandle)rgb1_to_gray(Image,GrayImage)dev_display(GrayImage)输出效果:…本例子的目的
- 统计机器学习第十三章极大似然估计的性质——图解MLE的渐进正态性
cui_hao_nan
统计机器学习导论机器学习
n=10;t=10000;s=1/12/n;x=linspace(-0.4,0.4,100);y=1/sqrt(2*pi*s)*exp(-x.^2/(2*s));z=mean(rand(t,n)-0.5,2);figure(1);clf;holdonb=20;hist(z,b);h=plot(x,y*t/b*(max(z)-min(z)),'r-');这段代码的功能是生成随机数并进行直方图和曲线的
- 图像数据处理24
逸缘
计算机视觉图像处理人工智能阙值分割
六、图像分割6.1阈值分割6.1.1阙值分割的基本概念根据图像的灰度值来对图像进行分割,高于灰度值的常被认为是前景图像,而低于灰度值的则被认为是背景图像。阙值的设定并不是唯一的,在对灰度图像进行阙值分割时可以设置多个阙值。6.1.2全局阙值与局部阙值全局阙值:对图片中所有像素都适用的阙值。局部阙值:图片中某像素的阙值是根据其的邻接像素等计算得出,该阙值只作用与某一部分素值。6.1.3灰度直方图与阙
- WPF:WPF绘制曲线
H_MZ
c#ui
简述 WPF开发中经常需要绘制曲线、直方图等。虽然WPF自带了绘制图形等基础功能,但做程序一个很基础的原则就是避免重复造轮子。在GitHub上找到了微软官方的WPF绘制曲线开源库:InteractiveDataDisplay.WPF。我使用的IDE是VS201x,建议使用NuGet安装--引用InteractiveDataDisplay.WPF。如何使用NuGet,请自行百度。以下是我实验的该开
- 判断图片中是否存在相同的元素
Enougme
Python-图像处理pythonopencv
要在Python中判断一张图片是否存在重复的元素,我们可以考虑一种简化的方法,即将图片分割成多个区域,计算每个区域的特征(如颜色直方图、纹理或哈希值等)并对这些特征进行比较。如果发现任何两个或多个区域拥有高度相似的特征,则可认为这些区域中包含的元素可能是重复的。以下示例展示如何使用哈希方法来大致实现这个目的。为了简单起见,我们将使用平均哈希(aHash)来比较各个区域。平均哈希的计算比较简单,即缩
- WPF-LiveChart
工控匠
WPF框架wpf
一、导入第三方库文件nuget---livechart.wpf二、.net项目中使用liveCharts.Wpf.Core折线图:CartesianChart直方图:CartesianChart饼图:PieChart1、笛卡尔折线图CartesianChart1.线条显示数值:DataLabels="True"2.线条是否弯曲:LineSmoothness="0"或"1"3.线条的颜色:Strok
- CCF-CSP认证考试准备第三天
爱coding的橙子
CCF-CSP认证算法数据结构
###Day3:1.202104-12.202109-13.202112-14.202303-15.202305-1####1.202104-1:灰度直方图(小模拟)理解题意即可,简单,过####2.202109-1:数组推导(小模拟,60->100(题目理解出现小偏差))(1)题目:A1,A2,⋯,An是一个由n个**自然数**(即非负整数)组成的数组。在此基础上,我们用数组B1⋯Bn表示A的前
- elasticsearch 之 histogram 直方图聚合
huan1993
1.简介直方图聚合是一种基于多桶值聚合,可从文档中提取的数值或数值范围值来进行聚合。它可以对参与聚合的值来动态的生成固定大小的桶。2.bucket_key如何计算假设我们有一个值是32,并且桶的大小是5,那么32四舍五入后变成30,因此文档将落入与键30关联的存储桶中。下面的算式可以精确的确定每个文档的归属桶bucket_key=Math.floor((value-offset)/interval
- 手把手教你OpenCV库常用函数及基础用法
今夕是何年,
3D视觉从入门到精通opencv计算机视觉人工智能
目录常用函数模块core模块imgproc模块highgui模块videoio模块基础用法常用函数模块opencv库主要分为4个模块:core、imgproc、highgui、videoio。core:包含OpenCV库的核心功能,如数据类型、矩阵操作、数组操作、图像处理等。imgproc:包含图像处理函数,如阈值处理、滤波、边缘检测、形态学操作、直方图处理等。highgui:提供了一些图形界面相
- 5.68 BCC工具之runqlat.py解读
高桐@BILL
AndroideBPFBooklinuxebpfandroidbccpython
一,工具简介runqlat工具用于分析和监视运行队列延迟。运行队列是操作系统内核中用于管理待运行进程的数据结构。当进程准备运行时,它们会被添加到运行队列中,然后由调度器选择并在CPU上执行。runqlat工具通过测量进程在运行队列中等待的时间,并以直方图的形式展示,它显示了任务等待在CPU上运行的时间。这帮助开发者了解系统调度行为的性能。使用该工具可以帮助我们识别和解决与调度延迟相关的问题。例如,
- 5.53 BCC工具之dbslower.py解读
高桐@BILL
AndroideBPFBooklinuxebpfandroidpythonbcc
一,工具简介dbstat用于追踪由MySQL或PostgreSQL数据库进程执行的查询,并显示查询延迟的直方图。二,代码示例#!/usr/bin/envpythonfrombccimportBPF,USDTimportargparseimportsubprocessfromtimeimportsleep,strftimeexamples="""dbstatpostgres#displayahist
- 深入了解OpenCVSharp中常见的图像处理功能
仰望大佬007
图像处理opencv计算机视觉c#
深入了解OpenCVSharp中常见的图像处理功能前言1.图像加载与保存2.图像基本操作3.图像滤波4.边缘检测5.图像分割6.特征检测与描述子7.目标识别与跟踪8.图像融合与拼接9.形状匹配与模板匹配10.颜色空间转换与直方图11.图像转换与绘制12.图像分类与机器学习13.高级图像处理算法14.GPU加速与并行计算前言OpenCVSharp是C#语言中用于图像处理和计算机视觉的开源库,它提供了
- Matplotlib
matplotlib
Matplotlib1.什么是MatplotlibMatplotlib是一个强大的Python绘图库,主要用于数据可视化。2.Matplotlib功能图表类型丰富:支持线图、散点图、条形图、直方图、饼图、柱状图、误差线图、箱线图等多种图表类型。高度自定义:用户可以自定义图表的样式,包括颜色、线型、标记、标题、坐标轴标签等。良好的兼容性:与NumPy、Pandas等Python科学计算库兼容,方便处
- 图像预处理技术与算法
木子n1
算法嵌入式开发算法数码相机计算机视觉
图像预处理是计算机视觉和图像处理中非常关键的第一步,其目的是为了提高后续算法对原始图像的识别、分析和理解能力。以下是一些主要的图像预处理技术:1.图像增强:对比度调整:通过直方图均衡化(HistogramEqualization)等方法改善图像整体或局部的对比度。伽玛校正:改变图像的亮度特性,用于补偿显示器或其他硬件设备的非线性响应。锐化处理:如使用高通滤波器(如拉普拉斯算子、Sobel边缘检测算
- 【plt.hist绘制直方图】:从入门到精通,只需一篇文章!【Matplotlib可视化】
高斯小哥
matplotlib信息可视化pythonpycharmnumpypandas
【plt.pie绘制直方图】:从入门到精通,只需一篇文章!【Matplotlib可视化】!利用Matplotlib进行数据可视化示例文章目录一、引言二、plt.hist()函数基础三、plt.hist()进阶技巧1.自定义直方图外观2.多组数据在同一张直方图上展示四、参考文档|相关链接五、结尾一、引言 数据可视化是数据分析和机器学习领域不可或缺的一部分。其中,直方图作为一种简单而直观的数据展示方
- python中绘制数组直方图一维数组划分10组_opencv-python 绘制直方图和均衡化
weixin_39607935
直方图什么是直方图?一个数字图像是由像素点组成的,每个像素点在计算机里都是以二进制代码存储的,通常都是8bit编码,也就是说一个像素的可能值是00H到FFH,如果是灰度图像,那么每个像素值便代表它的灰度值,如果是RGB三通道图像,每个像素值是一个数组比如[60,40,244]它代表每个通道的灰度值。直方图用来统计每个灰度值出现的次数。也就是每个灰度值出现的频数,横坐标是像素点的值,比如8bit编码
- opencv-python灰度直方图详解
Vertira
opencvopencvpython直返图
1,直方图的概念图像直方图是反映一个图像像素分布的统计表,其实横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的。纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比。图像是由像素构成,因为反映像素分布的直方图往往可以作为图像一个很重要的特征。图像灰度直方图:一幅图像由不同灰度值的像素组成,图像中灰度的分布情况是该图像的一个重要特征。图像的灰度直方图就描述了图像中灰度分布情况
- OpenCV-40 绘制直方图
一道秘制的小菜
OpenCVopencv人工智能计算机视觉numpypython
一、使用matplotlib画直方图可以利用matplotlib把OpenCV统计得到的直方图绘制出来示例代码如下:importcv2importmatplotlib.pyplotaspltlena=cv2.imread("beautifulwomen.png")#变为黑白图片gray=cv2.cvtColor(lena,cv2.COLOR_BGR2GRAY)print(gray)#统计直方图数据
- Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
- msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
- 路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
- Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
- web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
- c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
- 分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
- for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
- 网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
- JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
- JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
- 【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
- 【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
- Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
- java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
- mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
- [毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
- PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
- IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
- 网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
- Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
- MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
- cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
- HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
- swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
- java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
- mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
- Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
- struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st