JDK 源码中 HashMap 的 hash 方法原理是什么?

JDK 源码中 HashMap 的 hash 方法原理是什么?
JDK 的 HashMap 中使用了一个 hash 方法来做 bit shifting,在注释中说明是为了防止一些实现比较差的hashCode() 方法,请问原理是什么?

/**
 * Applies a supplemental hash function to a given hashCode, which
 * defends against poor quality hash functions.  This is critical
 * because HashMap uses power-of-two length hash tables, that
 * otherwise encounter collisions for hashCodes that do not differ
 * in lower bits. Note: Null keys always map to hash 0, thus index 0.
 */
static int hash(int h) {
    // This function ensures that hashCodes that differ only by
    // constant multiples at each bit position have a bounded
    // number of collisions (approximately 8 at default load factor).

    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
}

HashMap#hash()

这段代码叫“扰动函数”
题主贴的是Java 7的HashMap的源码,Java 8中这步已经简化了,只做一次16位右位移异或混合,而不是四次,但原理是不变的。下面以Java 8的源码为例解释:

/**
 * Returns the value to which the specified key is mapped,
 * or {@code null} if this map contains no mapping for the key.
 *
 * 

More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key==null ? k==null : * key.equals(k))}, then this method returns {@code v}; otherwise * it returns {@code null}. (There can be at most one such mapping.) * *

A return value of {@code null} does not necessarily * indicate that the map contains no mapping for the key; it's also * possible that the map explicitly maps the key to {@code null}. * The {@link #containsKey containsKey} operation may be used to * distinguish these two cases. * * @see #put(Object, Object) */ public V get(Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; }

大家都知道上面代码里的key.hashCode()函数调用的是key键值类型自带的哈希函数,返回int型散列值。

理论上散列值是一个int型,如果直接拿散列值作为下标访问HashMap主数组的话,考虑到2进制32位带符号的int表值范围从-21474836482147483648
。前后加起来大概40亿的映射空间。只要哈希函数映射得比较均匀松散,一般应用是很难出现碰撞的。

但问题是一个40亿长度的数组,内存是放不下的。你想,HashMap扩容之前的数组初始大小才16。所以这个散列值是不能直接拿来用的。用之前还要先做对数组的长度取模运算,得到的余数才能用来访问数组下标。源码中模运算是在这个indexFor( )函数里完成的。

bucketIndex = indexFor(hash, table.length);

indexFor的代码也很简单,就是把散列值和数组长度做一个"与"操作,

static int indexFor(int h, int length) {
    return h & (length-1);
}

顺便说一下,这也正好解释了为什么HashMap的数组长度要取2的整次幂。因为这样(数组长度-1)正好相当于一个“低位掩码”。“与”操作的结果就是散列值的高位全部归零,只保留低位值,用来做数组下标访问。以初始长度16为例,16-1=15。2进制表示是00000000 00000000 00001111。和某散列值做“与”操作如下,结果就是截取了最低的四位值。

        10100101 11000100 00100101
&    	00000000 00000000 00001111
----------------------------------
	    00000000 00000000 00000101    //高位全部归零,只保留末四位

但这时候问题就来了,这样就算我的散列值分布再松散,要是只取最后几位的话,碰撞也会很严重。更要命的是如果散列本身做得不好,分布上成等差数列的漏洞,恰好使最后几个低位呈现规律性重复,就无比蛋疼。

这时候“扰动函数”的价值就体现出来了,说到这里大家应该猜出来了。看下面这个图,JDK 源码中 HashMap 的 hash 方法原理是什么?_第1张图片
右位移16位,正好是32bit的一半,自己的高半区和低半区做异或,就是为了混合原始哈希码的高位和低位,以此来加大低位的随机性。而且混合后的低位掺杂了高位的部分特征,这样高位的信息也被变相保留下来。

最后我们来看一下Peter Lawley的一篇专栏文章《An introduction to optimising a hashing strategy》里的的一个实验:他随机选取了352个字符串,在他们散列值完全没有冲突的前提下,对它们做低位掩码,取数组下标。
JDK 源码中 HashMap 的 hash 方法原理是什么?_第2张图片
结果显示,当HashMap数组长度为512的时候,也就是用掩码取低9位的时候,在没有扰动函数的情况下,发生了103次碰撞,接近30%。而在使用了扰动函数之后只有92次碰撞。碰撞减少了将近10%。看来扰动函数确实还是有功效的。

但明显Java 8觉得扰动做一次就够了,做4次的话,多了可能边际效用也不大,所谓为了效率考虑就改成一次了。

HashMap#tableSizeFor()

/**
 * Returns a power of two size for the given target capacity.
 */
static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

这个方法被调用的地方:

/**
 * Constructs an empty HashMap with the specified initial
 * capacity and load factor.
 *
 * @param  initialCapacity the initial capacity
 * @param  loadFactor      the load factor
 * @throws IllegalArgumentException if the initial capacity is negative
 *         or the load factor is nonpositive
 */
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}

由此可以看到,当在实例化HashMap实例时,如果给定了initialCapacity,由于HashMap的capacity都是2的幂,因此这个方法用于找到大于等于initialCapacity的最小的2的幂(initialCapacity如果就是2的幂,则返回的还是这个数)。

下面分析这个算法:
首先,为什么要对cap做减1操作。int n = cap - 1;
这是为了防止,cap已经是2的幂。如果cap已经是2的幂, 又没有执行这个减1操作,则执行完后面的几条无符号右移操作之后,返回的capacity将是这个cap的2倍。如果不懂,要看完后面的几个无符号右移之后再回来看看。

0000 1000 cap = 8
0000 0100 >>> 1
0000 1100---------
0000 0011 >>> 2
0000 1111---------
0000 0000 >>> 4
0000 1111---------
0000 0000 >>> 8
0000 1111---------
0001 0000 n = n + 1

下面看看这几个无符号右移操作:
如果n这时为0了(经过了cap-1之后),则经过后面的几次无符号右移依然是0,最后返回的capacity是1(最后有个n+1的操作)。
这里只讨论n不等于0的情况。

第一次右移

n |= n >>> 1;

由于n不等于0,则n的二进制表示中总会有一bit为1,这时考虑最高位的1。通过无符号右移1位,则将最高位的1右移了1位,再做或操作,使得n的二进制表示中与最高位的1紧邻的右边一位也为1,如000011xxxxxx。

第二次右移

n |= n >>> 2;

注意,这个n已经经过了n |= n >>> 1; 操作。假设此时n为000011xxxxxx ,则n无符号右移两位,会将最高位两个连续的1右移两位,然后再与原来的n做或操作,这样n的二进制表示的高位中会有4个连续的1。如00001111xxxxxx 。

第三次右移

n |= n >>> 4;

这次把已经有的高位中的连续的4个1,右移4位,再做或操作,这样n的二进制表示的高位中会有8个连续的1。如00001111 1111xxxxxx 。

以此类推

注意,容量最大也就是32bit的正数,因此最后n |= n >>> 16; ,最多也就32个1(但是这已经是负数了。在执行tableSizeFor之前,对initialCapacity做了判断,如果大于MAXIMUM_CAPACITY(2 ^ 30),则取MAXIMUM_CAPACITY。如果等于MAXIMUM_CAPACITY(2 ^ 30),会执行移位操作。所以这里面的移位操作之后,最大30个1,不会大于等于MAXIMUM_CAPACITY。30个1,加1之后得2 ^ 30) 。
举一个例子说明下吧。
JDK 源码中 HashMap 的 hash 方法原理是什么?_第3张图片
这个算法着实牛逼啊!

注意,得到的这个capacity却被赋值给了threshold。

this.threshold = tableSizeFor(initialCapacity);

开始以为这个是个Bug,感觉应该这么写:

this.threshold = tableSizeFor(initialCapacity) * this.loadFactor;

这样才符合threshold的意思(当HashMap的size到达threshold这个阈值时会扩容)。
但是,请注意,在构造方法中,并没有对table这个成员变量进行初始化,table的初始化被推迟到了put方法中,在put方法中会对threshold重新计算,put方法的具体实现请看这篇博文。

你可能感兴趣的:(JDK 源码中 HashMap 的 hash 方法原理是什么?)