A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3
1 2 10
0 0 0
Sample Output
2
5
Source: Zhejiang Provincial Programming Contest 2004
由表达式可以联想到此题可以用快速幂矩阵来做,下面就easy了
#include
#include
#include
using namespace std;
struct node{
int m[2][2];
}A,per;
int a,b,p=7;
void init(){
A.m[0][0] = A.m[1][1] = 1;
A.m[0][1] = A.m[1][0] = 0;
per.m[0][0] = a;
per.m[0][1] = b;
per.m[1][0] = 1;
per.m[1][1] = 0;
}
node multi(node a,node b){
node c;
for( int i = 0 ; i < 2 ; ++i ){
for( int j = 0 ; j < 2 ; ++j ){
c.m[i][j] = 0;
for( int k = 0 ; k < 2 ; ++k )
c.m[i][j] += a.m[i][k]*b.m[k][j];
c.m[i][j] %= p;
}
}
return c;
}
void power(int k){
node ans = A;
while( k ){
if( k&1 ) ans = multi(ans,per);
per = multi(per,per);
k/=2;
}
printf("%d\n",(ans.m[0][0]+ans.m[0][1])%p);
}
int main(){
int k;
while( ~scanf("%d%d%d",&a,&b,&k) ){
if( !a&&!b&&!k ) break;
a%=p,b%=p;
if( k < 3 ){
printf("1\n");
continue;
}
init();
power(k-2);
}
return 0;
}