【Python实例第15讲】分类概率图

机器学习训练营——机器学习爱好者的自由交流空间(入群联系qq:2279055353)

这个例子将用图形表示不同分类器的分类概率。所谓“分类概率”,是指某个数据点属于各个类别的概率。将所有数据点属于任何类的概率,用颜色深浅表示,作出分类概率图。

在这里,我们使用一个三类的数据集,分别用支持向量机(SVC)、L1 and L2惩罚的Logistic回归和高斯过程分类。默认情况下,线性SVC并不是一个概率分类器,但是可以通过设置参数probability=True改变。具有One v.s. Rest的Logistic回归并不是一个多类别分类器,因此,在分隔类2,类3时要比其它分类器复杂些。

实例详解

首先,导入必需的库。

print(__doc__)

# Author: Alexandre Gramfort 
# License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np

from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn import datasets

本例使用的是鸢尾花数据集iris, 并且只用前2个特征作图。

iris = datasets.load_iris()
X = iris.data[:, 0:2]  # we only take the first two features for visualization
y = iris.target

n_features = X.shape[1]

定义不同的分类器,它们是:

  • L1惩罚的Logistic回归

  • L2惩罚的多类Logistic回归

  • L2惩罚的二类Logistic回归

  • 线性SVC

  • 高斯过程分类GPC

C = 10
kernel = 1.0 * RBF([1.0, 1.0])  # for GPC

# Create different classifiers.
classifiers = {
    'L1 logistic': LogisticRegression(C=C, penalty='l1',
                                      solver='saga',
                                      multi_class='multinomial',
                                      max_iter=10000),
    'L2 logistic (Multinomial)': LogisticRegression(C=C, penalty='l2',
                                                    solver='saga',
                                                    multi_class='multinomial',
                                                    max_iter=10000),
    'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2',
                                            solver='saga',
                                            multi_class='ovr',
                                            max_iter=10000),
    'Linear SVC': SVC(kernel='linear', C=C, probability=True,
                      random_state=0),
    'GPC': GaussianProcessClassifier(kernel)
}

n_classifiers = len(classifiers)

画出分类概率图。


plt.figure(figsize=(3 * 2, n_classifiers * 2))
plt.subplots_adjust(bottom=.2, top=.95)

xx = np.linspace(3, 9, 100)
yy = np.linspace(1, 5, 100).T
xx, yy = np.meshgrid(xx, yy)
Xfull = np.c_[xx.ravel(), yy.ravel()]

for index, (name, classifier) in enumerate(classifiers.items()):
    classifier.fit(X, y)

    y_pred = classifier.predict(X)
    accuracy = accuracy_score(y, y_pred)
    print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100))

    # View probabilities:
    probas = classifier.predict_proba(Xfull)
    n_classes = np.unique(y_pred).size
    for k in range(n_classes):
        plt.subplot(n_classifiers, n_classes, index * n_classes + k + 1)
        plt.title("Class %d" % k)
        if k == 0:
            plt.ylabel(name)
        imshow_handle = plt.imshow(probas[:, k].reshape((100, 100)),
                                   extent=(3, 9, 1, 5), origin='lower')
        plt.xticks(())
        plt.yticks(())
        idx = (y_pred == k)
        if idx.any():
            plt.scatter(X[idx, 0], X[idx, 1], marker='o', c='w', edgecolor='k')

ax = plt.axes([0.15, 0.04, 0.7, 0.05])
plt.title("Probability")
plt.colorbar(imshow_handle, cax=ax, orientation='horizontal')

plt.show()

【Python实例第15讲】分类概率图_第1张图片

【Python实例第15讲】分类概率图_第2张图片

阅读更多精彩内容,请关注微信公众号:统计学习与大数据

你可能感兴趣的:(【Python实例第15讲】分类概率图)