SEND + MORE = MONEY,每一个字母代表一个数字,如何求解?
这个问题显然不是传统意义上的整数规划问题,并没有需要进行优化的目标函数,因此使用约束规划进行求解,问题建模如下:
from ortools.sat.python import cp_model
# Creates the model.
model = cp_model.CpModel()
kBase = 10
# Creates the variables.
s = model.NewIntVar(1, kBase - 1, 'S');
e = model.NewIntVar(0, kBase - 1, 'E');
n = model.NewIntVar(0, kBase - 1, 'N');
d = model.NewIntVar(0, kBase - 1, 'D');
m = model.NewIntVar(1, kBase - 1, 'M');
o = model.NewIntVar(0, kBase - 1, 'O');
r = model.NewIntVar(0, kBase - 1, 'R');
y = model.NewIntVar(0, kBase - 1, 'Y');
letters = [s,e,n,d,m,o,r,y]
# Creates the constraints.
model.AddAllDifferent(letters)
model.Add(d + e + kBase * (n+r) + kBase * kBase * (e+o) + kBase * kBase * kBase * (s+m) ==
y + kBase * e + kBase * kBase * n + kBase * kBase * kBase * o + kBase * kBase * kBase * kBase * m)
# Creates a solver and solves the model.
solver = cp_model.CpSolver()
注意其中有一个model.AddAllDifferent(letters),是要求所有变量都不相等的快速表达模式。
如果只需要输出一个可行解,可以参照上一节的内容,将下列代码添加至模型之后:
status = solver.Solve(model)
print('status = %s' % solver.StatusName(status))
for v in letters:
print('%s=%i' % (v, solver.Value(v)), end=' ')
输出为:
status = FEASIBLE
S=9 E=5 N=6 D=7 M=1 O=0 R=8 Y=2
若要输出所有解,可以调用cp_model.CpSolver.SearchForAllSolutions(cp_model.CpModel, 回调函数(变量list))。
class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):
"""Print intermediate solutions."""
def __init__(self, variables):
cp_model.CpSolverSolutionCallback.__init__(self)
self.__variables = variables
self.__solution_count = 0
def OnSolutionCallback(self):
self.__solution_count += 1
for v in self.__variables:
print('%s=%i' % (v, self.Value(v)), end=' ')
print()
def SolutionCount(self):
return self.__solution_count
solution_printer = VarArraySolutionPrinter(letters)
status = solver.SearchForAllSolutions(model, solution_printer)
print('Status = %s' % solver.StatusName(status))
print('Number of solutions found: %i' % solution_printer.SolutionCount())
结果为:
S=9 E=5 N=6 D=7 M=1 O=0 R=8 Y=2
Status = FEASIBLE
Number of solutions found: 1
当问题规模比较大时,我们可以设置一些结束条件(解数量限制或者时间限制)。
时间限制的话,添加如下代码即可:
solver.parameters.max_time_in_seconds = 10.0
解数量限制的话,修改solver回调函数,将__solution__limit修改为限制值即可,参考如下代码:
class VarArraySolutionPrinterWithLimit(cp_model.CpSolverSolutionCallback):
def __init__(self, variables, limit):
cp_model.CpSolverSolutionCallback.__init__(self)
self.__variables = variables
self.__solution_count = 0
self.__solution_limit = limit
def OnSolutionCallback(self):
self.__solution_count += 1
for v in self.__variables:
print('%s=%i' % (v, self.Value(v)), end=' ')
print()
if self.__solution_count >= self.__solution_limit:
print('Stop search after %i solutions' % self.__solution_limit)
self.StopSearch()
def SolutionCount(self):
return self.__solution_count