无刷直流电机学习笔记11

一、内容

本期的学习内容主要是:结合原理,对比PMSM有霍尔传感器和无霍尔传感器在程序上的区别,就有/无霍尔传感器程序中速度/位置检测的相关代码进行学习。

二、知识点

1.有霍尔传感器程序中速度/位置检测

在PMSM中有霍尔传感器的程序中,主函数中定义了HALL_SENSORS,则执行HALL_HallTimerInit()函数,代码如下:

#elif defined HALL_SENSORS
HALL_HallTimerInit();
#endif
   HALL_HallTimerInit()函数的功能是初始化处理霍尔传感器反馈的计时器,从而捕获霍尔传感器的位置,主要程序如下所示:
void HALL_HallTimerInit(void)
{
  TIM_TimeBaseInitTypeDef
  TIM_HALLTimeBaseInitStructure;
  TIM_ICInitTypeDef  TIM_HALLICInitStructure;
  NVIC_InitTypeDef  NVIC_InitHALLStructure;
  GPIO_InitTypeDef  GPIO_InitStructure;
  #if defined(TIMER2_HANDLES_HALL)
    /* TIM2 clock source enable */
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);
    /* Enable GPIOA, clock */
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
    GPIO_StructInit(&GPIO_InitStructure);
    /* Configure PA.00,01 ,02 as Hall sensors input */
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2;
    GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPU;// GPIO_Mode_IN_FLOATING;
    GPIO_Init(GPIOA, &GPIO_InitStructure);
    #elif defined(TIMER3_HANDLES_HALL)
      GPIO_PinRemapConfig(GPIO_FullRemap_TIM3, ENABLE);
      /* TIM3 clock source enable */
      RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE);
      /* Enable GPIOA, clock */
     RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC|RCC_APB2Periph_AFIO,
ENABLE);
    /* Enable GPIOB, clock */
    //RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
    GPIO_StructInit(&GPIO_InitStructure);
    /* Configure PA.06,07  PB.00 as Hall sensors input */
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7| GPIO_Pin_8;
    GPIO_InitStructure.GPIO_Mode =  GPIO_Mode_IN_FLOATING;
    GPIO_Init(GPIOC, &GPIO_InitStructure);
    //GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
    //GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
    //GPIO_Init(GPIOB,&GPIO_InitStructure);
    #else // TIMER4_HANDLES_HALL
    /* TIM4 clock source enable */
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4,ENABLE);
    /* Enable GPIOB, clock */   
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
    /* Configure PB.06,07,08 as Hall sensors input */      
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6,GPIO_Pin_7, GPIO_Pin_8;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
    GPIO_Init(GPIOB, &GPIO_InitStructure);       
  #endif
    // Timer configuration in Clear on capture mode
    TIM_DeInit(HALL_TIMER);
    TIM_TimeBaseStructInit(&TIM_HALLTimeBaseInitStructure);
    // Set full 16-bit working range
    TIM_HALLTimeBaseInitStructure.TIM_Period = U16_MAX;
    TIM_HALLTimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
    TIM_TimeBaseInit(HALL_TIMER,&TIM_HALLTimeBaseInitStructure);
    TIM_ICStructInit(&TIM_HALLICInitStructure);
    TIM_HALLICInitStructure.TIM_Channel = TIM_Channel_1;
    TIM_HALLICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Falling;
    TIM_HALLICInitStructure.TIM_ICFilter = ICx_FILTER;   
    TIM_ICInit(HALL_TIMER,&TIM_HALLICInitStructure);
    // Force the HALL_TIMER prescaler with immediate access (no need of an update event) 
    TIM_PrescalerConfig(HALL_TIMER,(u16)HALL_MAX_RATIO,TIM_PSCReloadMode_Immediate);
    TIM_InternalClockConfig(HALL_TIMER);
    //Enables the XOR of channel 1, channel2 and channel3
    TIM_SelectHallSensor(HALL_TIMER, ENABLE);
    TIM_SelectInputTrigger(HALL_TIMER,TIM_TS_TI1FP1);
    TIM_SelectSlaveMode(HALL_TIMER,TIM_SlaveMode_Reset);
    // Source of Update event is only counter overflow/underflow
    TIM_UpdateRequestConfig(HALL_TIMER,TIM_UpdateSource_Regular);
    /* Enable the HALL_TIMER IRQChannel*/
    #if defined(TIMER2_HANDLES_HALL)
    NVIC_InitHALLStructure.NVIC_IRQChannel = TIM2_IRQChannel;
    #elif defined(TIMER3_HANDLES_HALL)
    NVIC_InitHALLStructure.NVIC_IRQChannel = TIM3_IRQChannel;
    #else //TIMER4_HANDLES_HALL
    NVIC_InitHALLStructure.NVIC_IRQChannel = TIM4_IRQChannel;
   #endif
   NVIC_InitHALLStructure.NVIC_IRQChannelPreemptionPriority =                                             TIMx_PRE_EMPTION_PRIORITY;
   NVIC_InitHALLStructure.NVIC_IRQChannelSubPriority = TIMx_SUB_PRIORITY;
   NVIC_InitHALLStructure.NVIC_IRQChannelCmd = ENABLE;
   NVIC_Init(&NVIC_InitHALLStructure);
   // Clear the TIMx's pending flags
   TIM_ClearFlag(HALL_TIMER, TIM_FLAG_Update + TIM_FLAG_CC1 + TIM_FLAG_CC2 + \TIM_FLAG_CC3 + TIM_FLAG_CC4 + TIM_FLAG_Trigger +TIM_FLAG_CC1OF +  \TIM_FLAG_CC2OF + TIM_FLAG_CC3OF + TIM_FLAG_CC4OF);
   // Selected input capture and Update  (overflow) events generate interrupt
   TIM_ITConfig(HALL_TIMER, TIM_IT_CC1,ENABLE);
   TIM_ITConfig(HALL_TIMER, TIM_IT_Update,ENABLE);
   TIM_SetCounter(HALL_TIMER,HALL_COUNTER_RESET);
   TIM_Cmd(HALL_TIMER, ENABLE);
}

其中,在整个程序中定时器2和定时器4没有定义,而定时器3则被用来作为霍尔传感器反馈定时器,通过定义TIMER3_HANDLES_HALL,与霍尔传感器相连。
在PMSM中有霍尔传感器的程序中,转子速度测量的方式为滚动识别的方式,通过比较当前状态和前一个状态推断出转子的转动方向,具体代码如下:

void TIM3_IRQHandler(void)
{
  static u8  bHallState; 
  u8 bPrevHallState;
  // Check for the source of TIMx int - Capture or Update Event - 
  if (TIM_GetFlagStatus(HALL_TIMER, TIM_FLAG_Update) == RESET )
  {
    bPrevHallState = bHallState;
    bHallState = ReadHallState();
    #if (HALL_SENSORS_PLACEMENT == DEGREES_120)    
    switch(bHallState)
    {
      case STATE_5:
      if(bPrevHallState == STATE_5)
      {        
        if(bSpeed<0)
        {
          bSpeed = POSITIVE_SWAP;
        }
        else
        {
          bSpeed = NEGATIVE_SWAP;
        }
    }
    else  if (bPrevHallState == STATE_6)
    {
      bSpeed = POSITIVE;
    }
    else  if (bPrevHallState == STATE_3)           
   {
     bSpeed = NEGATIVE;
   }
   //Update angle
   if(bSpeed<0)
   {         
     hElectrical_Angle = (s16)(S16_PHASE_SHIFT+S16_60_PHASE_SHIFT);
   }
   else if(bSpeed!= ERROR)
   {         
     hElectrical_Angle = S16_PHASE_SHIFT; 
   }
   break; 
   case  STATE_3:
   if(bPrevHallState == STATE_3)
   {
     //a speed reversal occured
     if(bSpeed<0)
     {
       bSpeed = POSITIVE_SWAP;
     }        
     else
     {
       bSpeed = NEGATIVE_SWAP;
     }
   }
   else  if (bPrevHallState == STATE_5)
   {          
     bSpeed = POSITIVE;
   }
   else  if (bPrevHallState == STATE_6)           
   {
     bSpeed = NEGATIVE;           
   }
   //Update of the electrical angle
   if(bSpeed<0)
   {
     hElectrical_Angle =(s16)(S16_PHASE_SHIFT+S16_120_PHASE_SHIFT+S16_60_PHASE_SHIFT);
   }
   else if(bSpeed!= ERROR)
   {
     hElectrical_Angle =(s16)(S16_PHASE_SHIFT + S16_120_PHASE_SHIFT);
   }       
   break; 
   case STATE_6: 
   if(bPrevHallState == STATE_6)
   {        
     if(bSpeed<0)
     {
       bSpeed = POSITIVE_SWAP;
     }
     else
     {
       bSpeed = NEGATIVE_SWAP;
     }
   }
   if(bPrevHallState == STATE_3)
   {        
     bSpeed = POSITIVE; 
   }       
   else  if(bPrevHallState == STATE_5)
   {
     bSpeed = NEGATIVE;         
   }  
   if(bSpeed<0)
   {
     hElectrical_Angle =(s16)(S16_PHASE_SHIFT - S16_60_PHASE_SHIFT);  
   }       
   else if(bSpeed!= ERROR)
   {         
     hElectrical_Angle =(s16)(S16_PHASE_SHIFT - S16_120_PHASE_SHIFT); 
   }       
   break;
   default: bSpeed = ERROR;
   break;
}

本段程序中,霍尔传感器的状态是通过函数ReadHallState()获得,同时由于霍尔传感器的绝对性,使得,当得知霍尔传感器的输出状态,便可以重建转子位置。程序中也是每次霍尔传感器发生变化,产生中断,就会更新转子的电角度,根据电机的转向和霍尔传感器的状态,通过初始化软件变量,便可以计算出当前电角度,用于Park变化。从而可以得知,转子的机械频率,即转子的转速,具体代码如下:

s16 HALL_GetSpeed ( void )
{ 
  s32 wAux; 
  if( hRotorFreq_dpp == HALL_MAX_PSEUDO_SPEED)
  { 
    return (HALL_MAX_SPEED);
  }
  else
  { 
    wAux = ((hRotorFreq_dpp* SAMPLING_FREQ * 10)/(65536*POLE_PAIR_NUM));
    return (s16)wAux;
  }
}

其中转子电频率hRotorFreq_dpp通过函数HALL_GetRotorFreq()获得。

2.无霍尔传感器程序中速度/位置检测

在PMSM中无霍尔传感器的程序中,主函数中定义了NO_SPEED_SENSORS,则执行STO_StateObserverInterface_Init()函数,代码如下:

#elif defined NO_SPEED_SENSORS
  STO_StateObserverInterface_Init();
#endif

其中,STO_StateObserverInterface_Init()的作用为提供观察转子位置的条件,当函数STO_Start_Up()启动时,各个相关参数进行初始化,另外,通过STO_Calc_Rotor_Angle()函数,运用离散状态检测方程,从而实现电机反电动式的计算。并且通过一个数字锁相环的方法,根据反电动势计算转子速度和角度,具体代码如下:

void STO_Calc_Rotor_Angle(Volt_Components Stat_Volt_alfa_beta,Curr_ComponentsStat_Curr_alfa_beta, s16 hBusVoltage) 
{ 
  s32 wIalfa_est_Next,wIbeta_est_Next;
  s32 wBemf_alfa_est_Next,wBemf_beta_est_Next; 
  s16 hValfa,hVbeta; 
  s16 hIalfa_err, hIbeta_err;  
  s16 hRotor_Speed; 
  s32 bDirection; 
  if (wBemf_alfa_est > (s32)(S16_MAX*hF2)) 
  { 
    wBemf_alfa_est = S16_MAX*hF2; 
  } 
  else if (wBemf_alfa_est <= (s32)(S16_MIN*hF2)) 
  { 
    wBemf_alfa_est = -S16_MAX*hF2; 
  } 
  if (wBemf_beta_est > (s32)(S16_MAX*hF2)) 
  {  
    wBemf_beta_est = S16_MAX*hF2; 
  } 
  else if (wBemf_beta_est <= (s32)(S16_MIN*hF2)) 
  {  
    wBemf_beta_est = -S16_MAX*hF2; 
  } 
  if (wIalfa_est > (s32)(S16_MAX*hF1)) 
  { 
    wIalfa_est = S16_MAX*hF1; 
  } 
  else if (wIalfa_est <= (s32)(S16_MIN*hF1)) 
  { 
    wIalfa_est = -S16_MAX*hF1; 
  } 
  if (wIbeta_est > S16_MAX*hF1) 
  { 
    wIbeta_est = S16_MAX*hF1; 
  }   
  else if (wIbeta_est <= S16_MIN*hF1) 
  { 
    wIbeta_est = -S16_MAX*hF1; 
  } 
  hIalfa_err = (s16)((wIalfa_est/hF1)-Stat_Curr_alfa_beta.qI_Component1); 
  hIbeta_err = (s16)((wIbeta_est/hF1)-Stat_Curr_alfa_beta.qI_Component2); 
  hValfa = (s16)((Stat_Volt_alfa_beta.qV_Component1*hBusVoltage)/32768);
  hVbeta = (s16)((Stat_Volt_alfa_beta.qV_Component2*hBusVoltage)/32768); 
  /*alfa axes observer*/ 
  wIalfa_est_Next = (s32)(wIalfa_est-(s32)(hC1*(s16)(wIalfa_est/hF1))+ (s32)(hC2*hIalfa_err)+ (s32)(hC5*hValfa)- (s32)(hC3*(s16)(wBemf_alfa_est/hF2))); 
//I(n+1)=I(n)-rs*T/Ls*I(n)+K1*(I(n)-i(n))+T/Ls*V-T/Ls*emf
  wBemf_alfa_est_Next = (s32)(wBemf_alfa_est+(s32)(hC4*hIalfa_err)+ 
  (s32)(hC6*hRotor_Speed_dpp*(wBemf_beta_est/(hF2*hF3))));
  //emf(n+1)=emf(n)+K2*(I(n)-i(n))+p*w*emfb*T
  /*beta axes observer*/ 
  wIbeta_est_Next = (s32)(wIbeta_est-(s32)(hC1*(s16)(wIbeta_est/hF1))+ (s32)(hC2*hIbeta_err)+ (s32)(hC5*hVbeta)- (s32)(hC3*(s16)(wBemf_beta_est/hF2))); 
  wBemf_beta_est_Next = (s32)(wBemf_beta_est+(s32)(hC4*hIbeta_err)- (s32)(hC6*hRotor_Speed_dpp*(wBemf_alfa_est/(hF2*hF3))));
  /* Extrapolation of present rotation direction, necessary for PLL */ 
  if (hRotor_Speed_dpp >=0) 
  { 
    bDirection = 1; 
  } 
  else 
  { 
    bDirection = -1; 
  } 
  /*Calls the PLL blockset*/ 
  hBemf_alfa_est = wBemf_alfa_est/hF2;  
  hBemf_beta_est = wBemf_beta_est/hF2; 
  hRotor_Speed = Calc_Rotor_Speed((s16)(hBemf_alfa_est*bDirection),(s16)(-hBemf_beta_est*bDirection)); 
  Store_Rotor_Speed(hRotor_Speed); 
  hRotor_El_Angle = (s16)(hRotor_El_Angle +hRotor_Speed); 
  /*storing previous values of currents and bemfs*/ 
  wIalfa_est = wIalfa_est_Next; 
  wBemf_alfa_est = wBemf_alfa_est_Next; 
  wIbeta_est = wIbeta_est_Next; 
  wBemf_beta_est = wBemf_beta_est_Next; 
}

其中,函数的输入分别为:定子电流(Stat_Curr_alfa_beta),施加的电压命令(Stat_Volt_alfa_beta)和测量的直流母线电压(hBusVoltage)。

另外,函数STO_Get_Electrical_Angle()返回转子电角度,函数STO_Get_Mechanical_Angle()返回转子机械角度,他们的关系为:

s16 STO_Get_Mechanical_Angle(void)
{
  return ((s16)(STO_Get_Electrical_Angle()/POLE_PAIR_NUM));
}

函数STO_Get_Speed()返回转子电速度,STO_Get_Speed_Hz()返回转子机械速度,他们之间的关系为:

s16 STO_Get_Speed_Hz(void)
{
  return (s16)((STO_Get_Speed()* SAMPLING_FREQ * 10)/(65536*POLE_PAIR_NUM));
}

三、总结

通过本期的学习,结合PMSM中有/无传感器的转子位置及转速检测算法的原理,对其相应的程序有了一定的认识,包括对各个参数的理解、信号反馈的处理过程等内容。接下来,将通过在实习中的动手实践,把所学的理论知识同实际进行一个初步的结合,从中提高自己。

你可能感兴趣的:(无刷直流电机学习笔记11)