- 深度学习详解:通过案例了解机器学习基础
beist
深度学习机器学习人工智能
引言机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是现代人工智能领域中的两个重要概念。通过让机器具备学习的能力,机器可以从数据中自动找到函数,并应用于各种任务,如语音识别、图像识别和游戏对战等。在这篇笔记中,我们将通过一个简单的案例,逐步了解机器学习的基础知识。1.1机器学习案例学习1.1.1回归问题与分类问题在机器学习中,根据所要解决的问题类型,任务
- 深入浅出:KVM虚拟机连接LinuxBridge完全指南
来自于狂人
云计算
在虚拟化的世界里,网络连接如同现实世界的道路系统,而LinuxBridge就是那座关键的桥梁。本文将带你亲手搭建这座桥梁,让KVM虚拟机畅通无阻。一、核心概念:理解虚拟化网络的基石在动手配置前,我们需要理解几个关键概念:KVM(Kernel-basedVirtualMachine)基于Linux内核的完全虚拟化解决方案通过/dev/kvm接口直接使用硬件虚拟化扩展典型工具栈:libvirt+QEM
- 【软件系统架构】系列四:嵌入式软件-M2M 与 NPU 技术对比及协同设计方案
目录一、基本定义二、技术目标差异三、架构组成对比四、功能能力对比五、应用场景对比六、综合对比总结表七、协同场景建议八、M2M+NPU协同系统设计方案1.系统架构图(简化逻辑)2.模块划分与功能说明三、通信时序图(关键路径)四、数据协议定义(JSON)上报事件(推理结果)云端控制命令五、协同机制设计建议六、典型应用示例(如:AI门锁、边缘安防)一、基本定义项目M2M(MachinetoMachine
- 找组织——机器学习社区、团体洞察
小哥伯涵
机器学习人工智能
在Github上,有一些中文社区可以看一看:prompt“如果我是个AI小白,想参加到一个组织,接收最新的AI有趣源项目、一些定期的刊物等。我应该加入哪些组织?”AI社区——深度学习社区Reddit上的MachineLearningsubreddit:https://www.reddit.com/r/MachineLearning/是一个拥有超过400,000名成员的活跃社区。在这里,您可以找到有
- 从零开始理解零样本学习:AI人工智能必学技术
AI学长带你学AI
学习人工智能ai
从零开始理解零样本学习:AI人工智能必学技术关键词:零样本学习、跨模态映射、语义空间、AI泛化能力、大模型、少样本学习、数据效率摘要:传统AI需要“见多识广”才能识别新事物,但现实中很多场景(如稀有物种、冷门物品)缺乏足够数据。零样本学习(Zero-ShotLearning,ZSL)就像AI的“推理翻译官”,能让机器通过“文字描述”理解“没见过的图片”。本文将用“认新单词”的生活故事,一步步拆解零
- 深度学习学习指南
努力的Lorre
深度学习人工智能
本帖子将以本书的逻辑和顺序做一个梳理:CS基础->AI算法->模型压缩->异构计算->AI框架->AI编译器《DeepLearningSystems》(https://deeplearningsystems.ai/)CS基础推荐书单所需的编程语言(C/C++、Python)就不多讲了,数据结构算法也是大学基础课程,不多赘述。对于操作系统需要多了解,推荐多看一看《深入理解计算机系统》(传说中的面试圣
- cnn 一维时序数据_AI顶会解读|时序动作分割与检测,附代码链接
时序动作分割与检测时序动作的分割与检测是视频计算机视觉技术的一大常规任务,对自动驾驶和机器人等应用至关重要,下面3篇论文是腾讯AILab在这一方向的探索成果。1.动作识别中的时序帧间差异表征学习TemporalDistinctRepresentationLearningforActionRecognition本文由腾讯AILab、腾讯优图实验室、新加坡南洋理工大学、美国纽约州立大学布法罗分校合作完
- 一个轻量级、可移植、支持层级状态的 C 语言状态机框架,适用于嵌入式和Linux应用
橘色的喵
Linux嵌入式性能优化功能优化c语言linux驱动开发状态机HSMFSMstate_machine
一个轻量级、可移植、支持层级状态的C语言状态机框架,适用于嵌入式和Linux应用1.介绍一个轻量级、可移植、支持层级状态的C语言状态机框架,适用于嵌入式和Linux应用。本框架采用数据驱动方式,支持父子状态、入口/出口动作、守卫条件、外部/内部转换、未处理事件钩子等特性。本文修改后的版本:https://gitee.com/liudegui/state_machineRT-Thread社区维护的版
- 串口协议解析方案对比:缓冲区滑窗与分层状态机
橘色的喵
性能优化功能优化嵌入式嵌入式硬件HSMFSM状态机分层串口
串口协议解析方案对比:缓冲区滑窗与分层状态机0.引言本文对比两种常见的串口协议解析实现方式:基于滑动缓冲区(RingBuffer)的扫描法与**基于分层状态机(HierarchicalStateMachine,HSM,推荐QP-nano框架)**的事件驱动法。内容涵盖协议格式、核心流程、结构细节、优缺点分析及适用场景。协议格式示例协议:0xAA(头)|LEN(1B)|CMD(1B)|DATA[LE
- 强化学习实战:从 Q-Learning 到 PPO 全流程
荣华富贵8
程序员的知识储备2程序员的知识储备3人工智能算法机器学习
1引言随着人工智能的快速发展,强化学习(ReinforcementLearning,RL)凭借其在复杂决策与控制问题上的卓越表现,已成为研究与应用的前沿热点。本文旨在从经典的Q-Learning算法入手,系统梳理从值迭代到策略优化的全流程技术细节,直至最具代表性的ProximalPolicyOptimization(PPO)算法,结合理论推导、代码实现与案例分析,深入探讨强化学习的核心原理、算法演
- 《Learning to See in the Dark》论文超详细解读(翻译+精读)
小西柚code
论文阅读深度学习计算机视觉人工智能
前言最近读到《LearningtoSeeintheDark》这篇论文,觉得很有意思,所以在这里记录一下。目录前言ABSTRACT—摘要翻译精读一、INTRODUCTION—简介翻译精读二、RELATEDWORKS—相关工作2.1Imagedenoising—图像降噪翻译精读2.2Low-lightimageenhancement—低光图像增强翻译精读2.3Noisyimagedatasets—带噪
- 开源项目教程:Learning to See in the Dark
包椒浩Leith
开源项目教程:LearningtoSeeintheDarkpytorch-Learning-to-See-in-the-Dark项目地址:https://gitcode.com/gh_mirrors/pyt/pytorch-Learning-to-See-in-the-Dark项目介绍pytorch-Learning-to-See-in-the-Dark是一个使用PyTorch框架实现的项目,旨在
- 深入解析Golang GMP
tatasix
gogolang后端
文章目录1.引言2.GMP模型概述与核心结构体2.1.G(Goroutine)2.2.M(Machine/Thread)2.3.P(Processor)2.4.全局调度器schedt(Scheduler)3.Goroutine的生命周期与状态管理3.1Goroutine的核心状态列表3.2各个状态的详细解析3.3Goroutine状态的转换过程3.4Goroutine状态图4.G、M、P的协作关系
- Java虚拟机(JVM)原理:深入理解Java程序的运行机制!
杨凯凡
java
大家好!今天我们来聊聊Java虚拟机(JVM)的原理。JVM是Java程序运行的核心,它负责将Java字节码翻译成机器指令,并管理程序的内存、垃圾回收等。理解JVM的工作原理,不仅能帮助我们写出更高效的代码,还能更好地排查性能问题和内存泄漏。准备好了吗?让我们开始吧!一、JVM简介JVM(JavaVirtualMachine)是Java程序的运行环境。它的主要功能包括:加载字节码:将.class文
- 强化学习(Reinforcement Learning, RL)概览
MzKyle
人工智能人工智能强化学习机器学习机器人
一、强化学习的核心概念与定位1.定义强化学习是机器学习的分支,研究智能体(Agent)在动态环境中通过与环境交互,以最大化累积奖励为目标的学习机制。与监督学习(有标注数据)和无监督学习(无目标)不同,强化学习通过“试错”学习,不依赖先验知识,适合解决动态决策问题。2.核心要素智能体(Agent):执行决策的主体,如游戏AI、机器人。环境(Environment):智能体之外的一切,如棋盘、物理世界
- A Survey on Deep Learning Techniques Applied to medical image analysis
AI天才研究院
AI人工智能与大数据自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.BackgroundandKeyConceptsIntroductionKeyTerms&Concepts3.CoreTechnicalConceptsandOperationsConvolutionalNeuralNetwork(CNN)StructureofaCNNLayerBuildingBlocksofCNNConvolutionalLaye
- C++工厂模式的作用(工厂方法、Factory Method、Factory Pattern)
Dontla
C/C++c++工厂方法模式
文章目录代码示例工厂的作用1.对象创建的封装2.解耦客户端和具体类3.统一的创建入口4.隐藏实现细节在这个项目中的具体体现总结代码示例https://gitee.com/arnold_s/my-learning-test/tree/master/20250610_C++_design_pattern/23_GoF_Design_Patterns/02_Strategy工厂的作用1.对象创建的封装T
- 基于分布式部分可观测马尔可夫决策过程与联邦强化学习的低空经济智能协同决策框架
pk_xz123456
算法无人机分布式算法matlab人工智能制造开发语言
基于分布式部分可观测马尔可夫决策过程与联邦强化学习的低空经济智能协同决策框架摘要:低空经济作为新兴战略产业,其核心场景(如无人机物流、城市空中交通、低空监测)普遍面临环境动态性强、个体观测受限、数据隐私敏感及多智能体协同复杂等挑战。本文创新性地提出一种深度融合分布式部分可观测马尔可夫决策过程(Dec-POMDP)与联邦强化学习(FederatedReinforcementLearning,FRL)
- Cross-stitch Networks for Multi-task Learning 项目教程
童香莺Wyman
Cross-stitchNetworksforMulti-taskLearning项目教程Cross-stitch-Networks-for-Multi-task-LearningATensorflowimplementationofthepaperarXiv:1604.03539项目地址:https://gitcode.com/gh_mirrors/cr/Cross-stitch-Network
- 探索多任务学习的新维度:Cross-stitch Networks
计蕴斯Lowell
探索多任务学习的新维度:Cross-stitchNetworksCross-stitch-Networks-for-Multi-task-LearningATensorflowimplementationofthepaperarXiv:1604.03539项目地址:https://gitcode.com/gh_mirrors/cr/Cross-stitch-Networks-for-Multi-t
- LightGBM 与 XGBoost 深度解析:从基础原理到实战优化
爱看烟花的码农
ML集成学习机器学习人工智能
LightGBM与XGBoost深度解析:从基础原理到实战优化引言梯度提升机(GradientBoostingMachine,GBM)及其衍生算法,如XGBoost和LightGBM,是当今机器学习领域中应用最为广泛且效果卓越的监督学习模型之一。然而,许多学习者在初次接触这些算法时,往往对其复杂的内部机制感到困惑,难以形成深刻理解,常常止步于对算法流程的死记硬背。本教程旨在深入浅出地剖析GBDT(
- 【可持续学习网络模型0】目前全球增量学习或持续学习研究现状
帮带做
人工智能学习python硕博论文创新持续学习增量学习神经网络
全球增量学习或持续学习研究现状一、全球研究现状综述(2025年主流)✅1.研究目标和挑战✅2.主流研究范式(按解决灾难性遗忘的策略分类)二、重点代表性方法简介(含通俗解释)1.**EWC(ElasticWeightConsolidation)**:2.**iCaRL(IncrementalClassifierandRepresentationLearning)**:3.**HAT(HardAtte
- Error: Could not create the Java Virtual Machine. Error: A fatal exception has exit
嘉沐_Ran
java开发语言
错误常见场景开发与运行环境版本不匹配:代码在高版本JDK(如Java11、17)中编译/开发,配置了--add-opens参数。实际运行时用了低版本JDK(如Java8),JVM无法解析该参数,直接报错退出。配置文件/脚本残留高版本参数:IDE(如Eclipse、IDEA)的运行配置、Tomcat等容器的启动脚本里,保留了--add-opens这类高版本专属参数,但运行环境没升级,也会触发错误。简
- Java全栈AI平台实战:从模型训练到部署的革命性突破——Spring AI+Deeplearning4j+TensorFlow Java API深度解析
墨夶
Java学习资料3java人工智能spring
一、背景与需求:为什么需要Java驱动的AI平台?某医疗影像公司面临以下挑战:多语言开发混乱:Python训练模型,C++部署推理,Java调用服务,导致维护成本高昂部署效率低下:PyTorch模型需手动转换ONNX格式,TensorRT优化耗时2小时/模型实时性不足:视频流分析延迟达3秒,无法满足急诊场景需求通过Java全栈AI平台,我们实现了:端到端开发:Java调用PyTorch训练模型,直
- 状态模式详解
杰_happy
设计模式状态模式
概述结构设计类似责任链模式,但是在各个状态进行遍历的过程中,更注重的是条件的判断,只有符合条件的状态才能正常匹配进行处理。条件不成功的会立即切换到下一个状态。有限状态机状态机一般指的是有限状态机(FSM:finite-statemachine),又称为优先自动状态机(FSA:finite-stateautomaton)。状态(State)状态机的有限个状态,例如:门可以分为开启、关闭两种状态。转换
- 工业视觉应用开发教程(一)
univerbright
工业视觉应用开发教程python人工智能工业视觉
一、工业视觉概述1.工业视觉的定义与应用场景:质量检测、目标定位、尺寸测量等工业视觉(MachineVision)是指通过计算机视觉技术和图像处理技术,模拟人类视觉来获取、分析、处理工业生产过程中的图像或视频数据,进而做出决策或控制动作的技术。工业视觉广泛应用于自动化生产线、质量检测、设备监控等领域,能够提高生产效率、确保产品质量、减少人工成本。应用场景:质量检测:工业视觉在质量检测中发挥着至关重
- 物联网开发笔记(9)- 使用Wokwi仿真MicroPython on ESP32开发板实现温度和湿度检测并使用屏幕显示_wokwi仿真平台
字节全栈_LSj
物联网笔记
‘’’frommachineimportPin,PWM,I2C,Timer,UARTimporttime,machine,ssd1306,dhtuart1=UART(1,115200)#调用串口uart1uart1.init(115200,bits=8,parity=None,stop=1)#初始化串口相关参数Tim_S=Timer(0)#定时器对象,很怪,有了这个定时器,下面的蜂鸣器没有了短促的
- CentOS 8解决ssh连接github时sign_and_send_pubkey失败问题
fangeqin
centossshgithub
我在一台centos8机器上安装git环境以连接到github,首先第一步需配置好ssh环境,因为我已经有一台Ubuntu机器已经配置好ssh环境,所以我ftpUbuntu机器取得id_rsaid_rsa.pubknown_hosts三个文件,然后执行命令:
[email protected]:your-username/learning_log.gitCloninginto'learn
- 【AIGC半月报】AIGC大模型启元:2024.06(上)
LeeZhao@
AIGCAIGC人工智能AIAgent
AIGC大模型启元:2024.06(上)(1)ChatTTS(语音合成项目)(2)Mamba-2(大模型新架构Mamba升级)(3)GLM-49B(智谱开源LLM)(4)Seed-TTS(字节语音合成)(5)QWen2(阿里大模型)(6)VideoReTalking(数字人对口型)(7)StableDiffusion3Medium(文生图更新)(8)DreamMachine(LumaAI文生视频)
- 彻底告别迷茫,探索机器学习的终极指南
wylee
机器学习人工智能
引言:信息洪流中的灯塔,你是否曾迷失方向?在这个AI技术日新月异的时代,机器学习(MachineLearning,ML)无疑是科技领域最耀眼、最具颠覆性的力量之一。从AlphaGo战胜人类围棋冠军,到智能推荐系统精准预测你的喜好,再到自动驾驶技术悄然改变出行方式,机器学习的力量无处不在。然而,对于无数渴望投身机器学习、或者希望在现有领域深耕的开发者而言,这股信息洪流也带来了前所未有的挑战:知识体系
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那